AD-A247 165 ION PAGE .V Form Approved OMB No. 0704-0188 sqe I how off fessonse, including the time for reviewing interschant, seatthing estating data source excilection of information. Send comments regarding this burdan arbitrate of any other aspect of the fusion readquarters Services, Directorate for information Operations and Associa, 1215 Istherio nagement and Burdan, 7-spericors Acquiction Project (0704-0185), Washington, CC 20503. 10/31/]99] 3. REPORT TYPE AND DATES COVERED 11/1/1990 to 10/31/1991 4. TITLE AND SUBTITLE Sensory sensitivities and discriminations and their roles in aviation. 5. FUNDING NUMBERS AFOSR-99-0080 61102F 2313. AS & AUTHOR(S) D. Regan 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) York University (Mrs. N. Swatman) Room 5415, Ross Building 4700 Keele Street North York, Ontario, Canada M3J 1P3 8. PERFORMING ORGANIZATION REPORT NUMBER AFOSRITR-92'0107 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) **AFOSR** Life Sciences Directorate Bolling AFB, DC 20332, U.S.A. 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES MAR 0 6 1992 122. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release: distribution unlimited. 12h DISTRIBUTION CODE 13. ASSTRACT (Maximum 200 words) (1) Evidence that intersubject differences in the ability to process MD shape are not predicted by the ability to process luminancedefined (LD) shape, that motion is processed in a hierarchical manner, that discrimination and detection can be dissociated for motion-defined (MD) form, and that spatial discrimination for MD and LD form are not entirely mediated by the same mechanism is as follows. (A) Reducing presentation duration or dot lifetime from 1.0 to 0.1 sec progressively reduced the visibility of a MD bar, but did not reduce orientation discrimination for the bar when visibility was held constant. (B) Detection and/or recognition of MD letters can be degraded by removal of brain tissue underlying prestriate cortex without affecting contrast sensitivity, Snellen acuity, low contrast acuity or sensitivity to motion. (2) Human subjects have excellent ability to process camouflaged MD shapes. Shape discrimination for an MD rectangle can be as low as 2-3%—as good as for an LD rectangle. (3) The human visual pathway is directly sensitive to the time to collision with an approaching object. We have modelled this processing, and report a method for measuring intersubject differences in discrimination of time to contact, and for unconfounding these from intersubject differences in discrimination of rate of expansion. (4) By recording the magnetic field of the brain we have identified an audio-visual integration area in the brain. We have also unconfounded responses to texture-defined form from responses to texture. We have shown that texture-defined form and luminance-defined form responses have different source locations in the brain. (5) We have developed a technique for measuring intersubject differences in susceptibility to glare, and are using it in a prospective study of flying safety. Also, the test quantifies visual status in cataract patients. (6) Our motion-defined letter test is now freely available, and we are using it in a prospective study of helicopter flying safety. Also, it detects damage hidden to acuity, motion and contrast sensitivity tests in patients with ocular hypertension, amblyopia and multiple sclerosis. 14. SUBJECT TERMS vision; visual flying skills; intersubject differences; visual navigation; perception of motion & self-motion; stereo; neuromagnetic recording; models of visual & auditory processing; multisensory convergence 15. NUMBER OF PAGES 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 20. LIMITATION OF ASSTRACT 1000 3 NSN 7540-01-280-5500 Unclassified Standard Form 298 (Rev. 2-89) 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 #### 1 RESEARCH OBJECTIVES The research objectives for three years were listed in the grant proposal as follows. ## 1.1 Long Term Aims - 1.1.1 We will further define the roles of the channeling hypothesis in: (a) identifying specific visual processes; (b) understanding visual performance; (c) specifying visual parameters likely to be important in eye-hand coordination especially in aviation, and flight simulator visual displays. - 1.1.2 We will use neuromagnetic recording techniques to: (d) identify the brain sites of different kinds of visual processing, auditory processing and multisensory integration, and relate these sites to the organization of visual, auditory and multisensory convergence areas in macaque monkey cortex; (e) relate objective data on visual and auditory processing in human brain to psychophysical models of human vision and hearing. ## 1.2 Specific Aims: Psychophysics ## 1.2.1 Camouflage and the Visual Processing of Objects Defined by Motion Alone We will determine the dynamics of the visual processing that mediates spatial discriminations of camouflaged objects that are defined by motion alone. We will investigate interactions between visual processing of objects defined by relative motion, objects defined by luminance contrast and objects defined by chromatic contrast by means of cross-adaptation and cross-masking paradigms. Drawing closer to the real-world visual environment we will investigate visual detection and spatial discriminations for objects that are defined by a combination of relative motion, luminance contrast and chromatic contrast. ## 1.2.2 Cyclopean Processing of Motion-in-Depth and Changing-Size We will generate targets that are visible in binocular view but invisible monocularly, and compare the sensitivities and dynamic characteristics of the processing of motion-in-depth generated by changing-disparity and changing-size for such cyclopean targets. By comparing these data with corresponding data for noncyclopean targets we will distinguish between the processing of 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 motion-in-depth and changing-size that occurs before and after convergence of the signals from left and right eyes. ## 1.2.3 Monocular Judgments of Trajectory of 3-Dimensional Motion We will measure the precision with which subjects can judge the trajectory of motion-indepth monocularly, and establish quantitative norms and normal intersubject variability. ## 1.3 Specific Aims: Theoretical ## 1.3.1 Multi-Rectifier Model with Dynamics We will extend our theoretical work on multi-rectifier models to include dynamics. ### 1.3.2 Multi-Rectifier Models of the Auditory Pathway We will develop a theoretical approach to characterizing multi-neuron models whose input is the sum of two modulated tones. ## 1.4 Specific Aims: Experimental neuromagnetic studies ### 1.4.1 Visual and Auditory Projections We will identify evoked activity in different visual, and auditory projections in human cortex, elucidate the differences between the type of processing occurring in the different areas, and link these data with the known functional neuroanatomy of macaque monkey brain and with human psychophysics. #### 1.4.2 Multi-Sensory Areas We will identify the cortical sites of interactions between responses to stimuli of different modalities, and compare these sites with the known multi-sensory cortical areas in nonhuman primates.⁶ ## 1.5 Specific Aims: Single-unit electrophysiology We will find whether the high stability evident in human evoked brain signals exists at the level of single cell firing or whether it is exclusively a population property. We will find whether the theoretical work described in Ref 179 can be used to test multi-stage models of neural COFY NSPECTED Ø odes 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 processing that takes place between the retina and the cortical cell under investigation. ### 1.6 Specific Aims: Simple tests of visual function We will determine intersubject variability among controls for our motion-defined letter test and find whether test results correlate with contrast sensitivity and Snellen acuity in controls. We will determine whether our motion-defined letter test and low contrast acuity test can provide clinically valuable information that is not provided by other tests in patients with Parkinson's disease and glaucoma. ### 2 STATEMENT OF WORK The statement of work for three years was set out in the grant proposal as follows. ## 2.1 Psychophysics: Dynamics of orientation discrimination for MD and LD bars Using temporal two-alternative forced choice we will measure velocity detection threshold for a perfectly camouflaged motion-defined (MD) dotted bar. This measurement will be carried out for each of 10 values of dot lifetime between 6 msec and 1000 msec, but with presentation time held constant at 1000 msec. A luminance-defined (LD) bar will be created by removing all dots outside the bar, and contrast detection threshold measured for the same 10 values of dot lifetime, presentation duration again held constant at 1000 msec. These detection threshold data will be used in measuring how orientation discrimination threshold for the MD bar depends on dot lifetime, dot velocity being adjusted at each dot lifetime so that it is a constant multiple (N) of bar detection threshold. The experiment will be repeated for different values of N. Then we will find how orientation discrimination for a LD bar depends on dot lifetime, dot contrast being adjusted at each dot lifetime so that it is a constant multiple (N) of bar detection threshold. This experiment will also be repeated for different values of N. We will compare plots of orientation discrimination threshold versus dot lifetime for MD and LD bars, the visibilities of the MD and LD bars being matched at N times above their 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 respective velocity and contrast detection thresholds, and attempt to use these data to
establish the degree to which the visual processing underlying orientation discrimination for MD bars is separate from the visual processing underlying orientation discrimination for LD bars. Then we will compare the dot lifetime data for MD and LD bars with the effect of presentation duration on orientation discrimination, dot lifetime being held equal to presentation duration. We will endeavor to relate these data to a model of orientation discrimination for MD bars in which (A) dot velocity within the bar and outside the bar is computed, then (B) the bar is detected (i.e. segregated from its surroundings) and a population of orientation-tuned neurons are excited by the bar, then (C) orientation discrimination is based on the relative activity of these orientation-tuned neurons. (Stage C follows the spirit of opponent process and line element hypotheses of orientation discrimination for contrast-defined bars or gratings [Refs 136, 145]). The first hypothesis to be tested is that, for MD bars that are a constant N times above detection threshold, excitation of stages (A) and (B) are constant, and differences in orientation discrimination is due entirely to stage (C). The second hypothesis to be tested is that the effect of dot lifetime at constant N is restricted to stages (A) and (B) and does not involve stage (C), while the effect of dot presentation time at constant N substantially involves stage (C). ## 2.2 Experiment 2. Psychophysics: Dynamics of shape discrimination for MD and LD rectangles This experiment is similar to 2.1 above except that we will measure aspect ratio (i.e. shape) discrimination for rectangular targets. Aspect ratio discrimination will be defined as the just noticeable (75% correct) difference in the ratio (a/b) where a and b are, respectively, the rectangle's horizontal and vertical side lengths. To ensure that aspect ratio judgements are based on a comparison of side lengths rather than the value of a or b alone, the area of the stimulus rectangle will be varied randomly between successive presentations. We will attempt to use these data to establish the degree to which the visual processing that underlies shape (aspect ratio) discrimination of MD rectangles is independent of the visual processing that underlies aspect ratio discrimination for LD 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 rectangles. Also, we will endeavor to relate the data to a model of aspect ratio discrimination for MD rectangles in which (A) dot velocity within the bar and outside the bar is computed, then (B) the rectangle is detected (i.e. segregated from its surroundings) and a population of neurons sensitive to the ratio of side lengths (a/b) is excited, then (C) orientation discrimination is based on the distribution of activity among these neurons. We hope to distinguish between the dynamic properties of stage (C) and those of earlier stages. ## 2.3 Experiment 3. Psychophysics: Cross-adaptation between MD, LD and color-defined stimuli We will display either (A) a dot pattern in which a motion-defined sinewaye grating is generated by moving the dots in one direction (e.g. horizontally) at a speed that varies in a perpendicular direction (vertically in this instance) according to a sinusoidal profile; (B) a pattern of stationary dots in which a sinewave grating is produced by varying dot luminance in one direction according to a sinusoidal profile; (C) a solid sinewave luminance grating; (D) an equiluminant color-defined grating. For any given presentation, the kind of grating and its orientation, spatial frequency, dot speed, luminance distribution, and color will be controlled by a PC that runs the psychophysical procedure (2AFC, constant stimuli) using our software. We will compare speed detection thresholds for MD gratings, before and after adapting to a high-speed MD grating, in order to find whether postadaptation threshold elevations for MD gratings are tuned to orientation and spatial frequency. (This protocol follows the protocols of Blakemore and Nachmias8 for luminance gratings). Because postadaptation data of this kind cannot be interpreted unequivocally in terms of orientation and spatial frequency channels^{32,33} we will obtain complementary evidence on this point by obtaining masking data by analogy with the protocol of De Valois and Switkes. 32 In this experiment we will measure the dot speed for just-detectable MD test gratings (75% correct, temporal 2AFC, method of constant stimuli) with and without MD masker gratings whose spatial frequencies and/or orientations differ from the test gratings. We will use these data to test the hypothesis that there are spatial frequency and orientation channels for MD targets (Ref 203). 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 Then we will repeat these experiments for all cross-adaptation and cross-masking permutations (e.g. adapt to solid luminance grating, test for MD dotted grating and vice versa). We will use these data to establish the degree to which the orientation and spatial frequency of a MD grating is processed independently of the orientation and spatial frequency of a CD grating and of a color-defined grating. ## 2.4 Experiment 4. Psychophysics: Interactions between contributions of motion contrast and luminance contrast to detection and discrimination We will generate dotted gratings that are rendered visible by a combination of relative velocity and luminance contrast. We have developed PC software that allows up to 100 different combinations to be presented in a method of constant stimuli protocol according to a matrix of the following kind. Suppose that parameter x is the contrast of the luminance grating and parameter yis the relative dot speed of the motion-defined grating. The matrix below contains every permutation of 10 values of luminance contrast (1-10 with #1 corresponding to zero contrast) with 10 values of relative dot speed (A-J with A corresponding to stationary dots). The PC selects the 100 stimuli random order and records the subjects button presses. The data can be analyzed by Probit analysis along any given row (giving contrast threshold in the presence of fixed dot speeds) or columns (giving velocity thresholds in the presence of fixed amounts of luminance contrast). This matrix provides a total of 20 threshold estimates. Collecting the data for a large experiment of this kind will extend over many days, whatever procedure is used. The chief purpose of the matrix method is to ensure that day-to-day variability is spread out among the whole 20 thresholds rather than perturbing individual thresholds as may be the case when individual thresholds are measured on different days. However, the thresholds will be compared with those obtained by the more usual psychophysical procedure when only one parameter is varied systematically (i.e. when the PC selects stimuli from only one row or column), because in the matrix procedure, the subject is exposed to two independently-varying visual parameters, a situation that more closely approximate many real-world situations than the more usual psychophysical procedure where only one para- 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3) 1P3 meter is varied systematically. On the basis of findings that stimulus uncertainty affects threshold (e.g. Ball & Sekuler, 1990) it is envisaged that thresholds may differ in the two situations. MATRIX INCREASING DOT CONTRAST | | A1 | A2 | A3 | A4 | A 5 | A6 | A7 | A8 | A9 | A10 | |----------------|------------|------------|------------|------------|------------|------------|------------|-----------|-----------|-----| | r Speed | B1 | B 2 | В3 | B 4 | B 5 | B 6 | B 7 | B 8 | B 9 | B10 | | | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | | рол | D1 | D2 | D 3 | D 4 | D 5 | D 6 | D7 | D8 | D9 | D10 | | INCREASING DOT | E1 | E2 | E3 | E4 | E 5 | E 6 | E7 | E8 | E9 | E10 | | | F1 | F2 | F3 | F4 | F5 | F6 | F 7 | F8 | F9 | F10 | | | G1 | G 2 | G3 | G4 | G 5 | G6 | G7 | G8 | G9 | G10 | | | H1 | H2 | Н3 | H4 | Н5 | H6 | H7 | H8 | Н9 | H10 | | | I 1 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 110 | | | J1 | J2 | J 3 | J 4 | J5 | J 6 | J7 | J8 | Ј9 | J10 | In separate experiments we will measure grating detection threshold and discrimination thresholds for orientation and spatial frequency. The subject will have 3 pairs of response buttons and in temporal 2AFC be instructed to respond (A) which interval contained a grating, first or second?, (B) was the grating an MD grating?, (C) was the grating a luminance grating? The subject will be further instructed that the correct answer may be YES to both (B) and (C), NO to both (B) and (C), or YES to either (B) or (C) and NO to the other. The 3 sets of button presses will be analyzed separately. We will use the data to find whether visual responses to contrast and to relative velocity and independently or interact nonlinearly in determining grating detection thres- Department of Psychology #### FACULTY OF ARTS 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 hold. In particular, we will find whether the two parameters combine according to probability summation when both parameters are below detection threshold level when presented alone. Also, we will find the combination rules for the two parameters in determining orientation discrimination and spatial frequency discrimination when one or both parameters are above detection threshold level. ## 2.5 Experiment 5. Psychophysics: Cyclopean and non-cyclopean motion in depth We will generate two dot patterns, one on each half of the screen, one viewed by the left eye and one by the right eye. A new dot pattern will be generated at 60 Hz frame rate so as to create dynamic random noise and one pattern will be routed optically to the left eye and the other
pattern to the right eye. It is necessary to use dynamic rather than static random noise because a moving target in static random noise breaks camouflage and would, therefore, be visible monocularly, while a moving target in dynamic random noise is not visible monocularly. A rectangular area within the dot pattern will be rendered visible by a relative displacement of the left and right eye's rectangles so as to create binocular disparity as described by Julesz. The dimensions of the rectangle, its rate of change of size and its rate of change of disparity will all be controlled by instructions to the IRIS from the PC that runs the experiment. First we will modulate the rectangle's size sinusoidally and using temporal 2AFC, separately measure the oscillation amplitude that gives just-detectable size oscillation and just detectable motion-in-depth for a range of oscillation frequencies from 0.2 Hz upwards. Then we will oscillate disparity at fixed size and use 2AFC to measure the amplitude of disparity oscillation for just-detectable motion-in-depth. These experiments will be repeated at fixed values of mean disparity (crossed and uncrossed). A pilot experiment using our hardware dot generator (Ref 130) indicates that motion-indepth sensation generated by changing-disparity can be cancelled by pitting changing-disparity against changing-size stimulation. This pilot result suggests that changing-size and changingdisparity signals converge at a single motion-in-depth stage. For sinusoidally oscillating disparity 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 and changing-size we will use temporal 2AFC to measure the amplitude of size oscillation that cancels the sensation of motion-in-depth produced by a fixed amplitude of disparity oscillation for different oscillation frequencies. This experiment will be repeated for different fixed amplitudes of disparity oscillation. Then we will investigate dynamics in the time domain using transient (ramping) changes of disparity and changing-size. We will use temporal 2AFC to measure formally the ramping rates of change of size that cancels the sensation of motion-in-depth a fixed rate of change of disparity for different ramp durations. This experiment will be repeated for different fixed rates of change of disparity. The above experimental protocols are the same as these used earlier for monocularly-visible targets (Ref 85). By comparing our cyclopean data with data for monocularly-visible dotted targets we will endeavor to distinguish between the processing underlying motion-in-depth perception that takes place after and before convergence of the signals from left and right eyes. ## 2.6 Experiment 6. Psychophysics: Monocular discrimination of time to contact and direction of motion in depth We will generate a bright solid rectangle on a Tektronix model 608 monitor using our own-design hardware and view the rectangle monocularly. Motion-in-depth along different trajectories will be mimicked by moving the rectangle across the CRT screen at different speeds and at the same time changing the rectangle's size. The resulting stimulus will be quantified in terms of the relative velocity of the rectangle's opposite edges. The rectangle's motion will be controlled by a PC (2AFC, constant stimuli). We will measure the just discriminable change of trajectory for a wide range of trajectories in the horizontal, vertical and the two 45 deg oblique planes for a population of 20 control subjects. ## 2.7 Experiment 7. Theoretical: Two-sinewave approach to characterizing nonlinear multi-neuron models We will extend the theoretical work described in the Final Technical Report for 1987–1990 to include dynamics by inserting a linear frequency-dependent filter before and after every rectifier. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 We aim to build a catalog of families of curves for the following kinds of multi-neuron models with dynamics: (A) a sequence of n cascaded rectifiers, including the case that all rectifiers are different, and (B) two such parallel sequences, converging onto a third sequence of cascaded rectifiers (i.e. the dichoptic or the diotic case). The high speed of the IRIS will allow us to obtain numerical solutions for these cases. ### 2.8 Experiment 8. Theoretical: Amplitude- and frequency-modulated tones We will develop a procedure for calculating the amplitudes and phases of the frequency terms in the output of a single rectifier whose input is the sum of two amplitude-modulated (AM) or two frequency-modulated (FM) tones, or one AM plus one FM tone. The rectifier characteristics treated will include compressive, accelerating and mixed, with and without threshold. Then we will go on to consider: (A) a sequence of cascaded rectifiers including the case that all the rectifiers have different characteristics, and (B) two parallel cascaded sequences of rectifiers converging onto a third cascade of rectifiers (i.e. the diotic case). In cases (A) and (B) we will treat dynamic properties by including a linear frequency-dependent stage on either side of every individual rectifier. We will build a catalog of families of curves that characterize multi-rectifier models of the auditory pathway, and will allow these models to be tested against neuromagnetic data. ## 2.9 Experiment 9. Neuromagnetism: Interactions specific to orientation and spatial frequency By combining neuromagnetic recording with the two-sinewave techniques described in the Final Technical Report for 1987–90 extended to include dynamics we will identify the sites of interaction between cortical neurons tuned to different orientations and spatial frequencies. We will compare these sites in human brain with known properties of neurons in V1, V2, V3 and other known prestriate areas in macaque cortex. We will relate our conclusions to the processing of complex two-dimensional patterns in human brain. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 ## 2.10 Experiment 10. Neuromagnetism: Location and characterization of neural mechanism underlying the 40 Hz response in human By stimulating with flickering light at frequencies near 40 Hz and with gratings of low spatial frequencies counterphase-modulated at rates near 20 Hz we will find whether the human brain has a 40 Hz neuromagnetic resonant-like response that corresponds to the electrical 40 Hz response we described previously (Ref 4). If so, we will estimate the brain location of the response, then we will stimulate with two flickering lights and with two gratings of F₁ and F₂ Hz and use our theoretical method described in the Final Report for 1987–90 (Refs 167, 178, 179, 183) to characterize the 40 Hz response. The results will be related to the recently-reported 40 Hz response in single-unit activity.² ## 2.11 Experiment 11. Neuromagnetism: Characterization of brain responses to stereomotion We will find which areas of human cortex are selectively sensitive to the direction of stereomotion-in-depth and compare their properties with the properties of stereomotion channels (Refs 34, 49) and motion-in-depth neurons (Refs 73, 79, 111, 112). We will use areas of motion-in-depth "blindness" in control subjects to check that neuromagnetic responses to changing disparity are associated with motion-in-depth perception. ## 2.12 Experiment 12. Neuromagnetism: Characterization of brain responses to motion-defined form In control subjects we will measure the distribution of evoked magnetic responses to camouflaged objects defined by motion alone, estimate the source location, and compare this location with published estimates (Brodmann areas 19 & 39) of the location of the human equivalent of monkey area MT.^{3,4,5} Measurements will also be made on patients with focal cortical lesions that involve the human equivalent of MT (shown by magnetic resonance imaging) and who have abnormal psychophysical scores on our form-from-motion test (see Fig 13 below). We will also compare our psychophysical findings on spatiotemporal integration for motion-defined objects with corresponding magnetic evoked responses. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 ## 2.13 Experiment 13. Neuromagnetism: Characterization of audio-visual convergence areas in human brain Control subjects will be stimulated simultaneously with a light modulated at F_1 Hz and a sound modulated at F_2 Hz. We will obtain the spectrum of the neuromagnetic response and search for cross-modulation terms of frequency ($nF_1 \pm mF_2$) where neither n nor m is zero. Such terms must necessarily be generated after convergence of visual and auditory pathways. We will estimate the brain location(s) of at which these terms are generated and compare these sites with the sites of multi-sensory projection areas in monkey cortex described by Van Essen.⁶ ## 2.14 Experiment 14. Neuromagnetism: Interactions of brain responses to AM and FM tones We will use zoom-FFT to record interactions between responses to two simultaneous modulated tones and in particular we will compare interactions between two AM tones, two FM tones and cross-interactions between AM and FM tones. We will model the data using the theoretical approach proposed in Section 6.2.8 above, and relate the data to the shape of the hair cell transducer function, i.e. we will provide a theoretical treatment for the empirical findings reported in Section 7 of the original grant application (see Refs 177, 188). We will also use the data to test our psychophysically-based hypothesis that the human auditory pathway processes AM and FM information in parallel and almost independently (Refs 80, 87). ## 2.15 Experiment 15. Single Unit Electrophysiology: Analysis of orientation-specific interactions using the two-sinewave approach This experiment will be carried jointly with Professor Grasse. He will be responsible for anesthesia, surgery and for recording the single-unit spikes. We will stimulate the eye with a
grating counterphase-modulated at F Hz and obtain ultra-high resolution spectra by processing the spike train as described in the Final Technical Report for 1987–90. We will analyze a 500 sec recording so as to obtain 0.002 Hz resolution, and will measure the bandwidth of the 2F Hz and 4F Hz responses. We will simultaneously record local evoked potentials from a wire electrode in contact with the cortex, and analyze these data as described in Section 7 of the original grant 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 application (Ref 179). Then we will compare the bandwidths of the single-unit firing and of the evoked potential. We will go on to stimulate the eye with two superimposed gratings, one modulated at F₁ Hz, the other at F₂ Hz while recording spike firing and local slow waves, and subject 500-sec records to spectral analysis at 0.002 Hz resolution. With one grating at constant orientation we will repeat the measurement at different orientations of the second grating, and use the theoretical work described in the Final Technical Report for 1987–90 to test multi-neuron models of orientation processing. We will compare these data on orientation processing with orientation tuning data obtained conventionally using a single sinewave for different classes of cell (i.e. simple, complex). ### 2.16 Experiment 16. Medical Tests: Motion-defined letter test We will record results for our motion-defined letter test, our low-contrast acuity test, contrast sensitivity for a 3 cycles-deg, 8 Hz sinewave grating and Snellen acuity every 2 months on patients with Parkinson's disease, and correlate test results with the clinical progress of the disease. (Clinical progress will be assessed by Professor A. Lang, M.D. as part of the ongoing U.S./Canadian DATATOP multi-center trial of the drug Deprenyl in Parkinson's disease.) We will compare motion-defined letter test results with deficits in smooth pursuit eye movements that have been measured by Professor J. Sharpe, M.D. in a separate ongoing study. We will record motion-defined letter test results in patients with ocular hypertension and early glaucoma and correlate these results longitudinally with the clinical progress of the disease. (Clinical progress will be assessed by Professor G.E. Trope as part of an ongoing separate study.) ### 3 STATUS OF THE RESEARCH EFFORT ### 3.1 Experiment 1 and Specific Aim 1.2.1 This experiment has been completed. A paper has been submitted to Vision Research (Ref 218) and a chapter is in preparation for a book proceedings of the 1991 York International Department of Psychology #### FACULTY OF ARTS 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 Conference on Spatial Vision (Ref 238). Our previous finding that orientation discrimination can be as acute for MD bars as for LD bars poses a challenge for models of orientation discrimination. With the aim of providing further data for testing competing models, we extend our previous study of orientation discrimination by measuring dynamic properties of bar detection and orientation discrimination for MD bars. Further, we compare these data with measurements of the corresponding dynamic properties of detection and discrimination for LD bars. We describe below two aspects of these dynamic properties. The first aspect was brought out by varying stimulus duration, and the second by varying dot lifetime. A pseudo-random pattern of bright dots subtending 2.2×2.2 deg was generated by laboratory-built hardware electronics, displayed on a CRT (Tektronix model 608 with green P31 phosphor) and viewed from a distance of 207 cm. Figure 1A shows a photograph of a typical pattern. There were 100 complete frames per sec. Dots subtended about 2.0 min arc, and mean dot separation was 6 min arc (approx. 1000 dots in all). A new dot pattern could be generated every frame. Dots could be moved in any direction by applying an analog voltage to the monitor's x and/or y plates. The motion of dots within a rectangular region of the entire 2.2×2.2 deg pattern could be controlled independently of the motion of dots outside this region, and the orientation, x-y dimensions and location of the region were controlled by external voltages independently of dot motion. This rectangular region could not be demarcated visually from the rest of the dot pattern if the dot velocity inside and outside the region were the same. By means of a beamsplitter, the dot pattern was optically superimposed on a circular, uniformly-illuminated green area of diameter 3.7 deg and luminance 2.1 cd m⁻². Dots were switched off except during the pattern presentations. A new pseudo-random dot pattern was generated for each trial. A 1.5 x 0.22 deg stationary bar-shaped area within the dot pattern was rendered visible by moving the dots inside the bar horizontally to the left at a constant speed that was equal and 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 Figure 1. A: Random dot pattern subtending 2.2 deg and containing a perfectly camouflaged bar was superimposed on a homogeneous, circular, uniformly-illuminated area of diameter 3.7 deg. Note that the dots were bright rather than black as shown here. B: The camouflaged bar was revealed by moving dots inside and outside the bar at equal speeds in opposite directions. Department of Psychology #### FACULTY OF ARTS 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 opposite to the speed of the dots in the remainder of the pattern (Ref 157). The reason for choosing type B motion-defined form rather than type A motion-defined form and for using equal and opposite speeds rather than different speeds or different directions of motion was as follows. The bar and its orientation were clearly visible in a photographic time exposure of type A motiondefined form, whether the moving bar was surrounded by stationary dots or by dynamic random noise. The bar was clear to eyeball inspection also, but we cannot necessarily assume that it was detected by using the relative motion cue rather than by texture contrast. A type B motion-defined bar was rendered visible by texture contrast in a photograph when dots within the bar and outside the bar moved at different speeds or in different directions (Ref 157). In principle, the population activity of cortical neurons could signal the presence of such a type B bar or of a type A bar even in a motion-blind visual system. The reason is that cortical neurons sensitive to the length and orientation of a line have a finite temporal integration time constant for luminance, and thus could give a similar response to a rapidly-moving spot and a line. However, when the dots inside and outside the bar moved at equal and opposite speeds the bar was almost invisible to the camera, though clearly evident to eyeball inspection (Ref 157), so that we can assume that the texture contrast cue to bar detection was effectively removed. The possibility that subjects might track either the dots within the bar or outside the bar, and thus re-introduce the blurring cue, was discounted by measuring eye movements using an SRI double-Purkinje eye tracker. In order to measure thresholds of about 0.3 deg, it was necessary to present orientation differences as small as 0.1 deg. A pixel-based system has the disadvantage that the long edges of an inclined bar are stepped rather than being straight, and this limits the smallest change in orientation. For example, a bar 600 pixels in length oriented at 0.1 deg to the vertical would have only a single one-pixel step along its length – whatever the viewing distance. Our display has the advantage that indefinitely small changes in orientation can be generated. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 Effects of presentation duration and dot lifetime on orientation discrimination for MD and LD bars at constant dot speed and contrast Figure 2 shows that orientation discrimination was approximately the same for MD and LD bars when presentation duration was sufficiently long. The best value of orientation discrimination threshold for an MD bar was 0.4 deg for subject 1, 0.5 deg for subject 2 and 0.7 deg for subject 3 at the longest presentation duration of 1.0 sec, but discrimination worsened rapidly as presentation duration was reduced below 0.10–0.15 sec, and could not be measured at all for durations below 0.04–0.05 sec. For a LD bar, orientation discrimination threshold showed a comparatively small increase as presentation duration was reduced from 1.0 sec to 0.01 sec (from 0.33 deg to 1.0 deg for subject 1, from 0.42 deg to 0.9 deg for subject 2 and from 0.55 deg to 1.6 deg for subject 3). Figure 3 shows that, for a fixed presentation duration of 1.0 sec, orientation discrimination was approximately the same for MD and LD bars when dot lifetime was sufficiently long. For MD bars, dot lifetime had no appreciable effect on orientation discrimination over a range of long lifetimes, but discrimination degraded rapidly as dot lifetime fell below about 0.15 sec (Fig. 3A) or 0.25 sec (Fig. 3B, C) and could not be measured at all for dot lifetimes less than about 0.04–0.06 sec. For LD bars, dot lifetime had no effect on orientation discrimination over the entire range of lifetimes investigated between 0.01 sec (i.e. one frame) to 1.0 sec. Effect of presentation duration and dot lifetime on bar detection threshold for MD and LD bars Solid circles in Fig. 4A, B plot bar detection threshold speed versus presentation duration, for MD bars with dot lifetime always equal to presentation duration. Solid triangles in Fig. 4A, B plot bar detection threshold speed for MD bars versus dot lifetime, presentation duration being constant at 1.0 sec. These data were obtained using procedure 1 (see below). Bar detection threshold speed was approximately 0.006 deg/sec (i.e. relative speed 0.012 deg/sec) for a presentation in which both presentation duration and dot lifetime were 1.0 sec, and
increased progressively, reaching 0.13 deg/sec (i.e. relative speed 0.26 deg/sec) or more when either presentation duration or dot lifetime had decreased to 0.06 sec. Figure 2. Orientation discrimination threshold (ordinates) versus presentation duration (abscissae) for a dotted bar defined by relative motion (•) and for the same dotted bar defined by luminance contrast (O). The vertical bars mark one standard error. Dot lifetime was equal to presentation duration. Dot speed was 0.68 deg/sec, so the relative dot speed was 1.4 deg/sec. A, subject 1. B, subject 2. C, subject 3. Figure 3. Orientation discrimination threshold (ordinates) versus dot lifetime (abscissae) for a dotted bar defined by relative motion (\triangle) and for the same dotted bar defined by luminance contrast (\square). The vertical bars mark one standard error. Presentation duration was 1.0 sec throughout. Dot speed was 0.68 deg/sec, so the relative dot speed was 1.4 deg/sec. A, subject 1. B, subject 2. C, subject 3, Figure 4. Bar detection threshold speed (ordinates) versus presentation duration (abscissae, ●) and versus dot lifetime (abscissae, ▲) for a dotted bar defined by relative motion. For presentation duration data, dot lifetime was equal to presentation duration. For dot lifetime data, presentation duration was constant at 1.0 sec. The vertical bars mark one standard error. Dot speed was 0.68 deg/sec, so the relative dot speed was 1.4 deg/sec. A, subject 1. B, subject 2. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3) 1P3 Solid circles in Fig. 5A, B plot bar detection contrast thresholds for LD bars versus presentation duration, with dot lifetime always equal to presentation duration. Threshold rose as duration was reduced, much as detection threshold for MD bars in Fig. 4 (solid circles). Solid triangles in Fig. 5A, B plot threshold contrast for LD bars versus dot lifetime, dot duration being constant at 1.0 sec. Dot lifetime has no effect on threshold. [Contrast this with the different behavior of detection threshold for MD bars shown in Fig. 4 (solid triangles).] Orientation discrimination versus dot speed for MD bars of different presentation durations and dot lifetimes Figure 6A and B shows that plots of orientation discrimination versus dot speed for MD bars were displaced progressively rightwards as presentation duration was decreased from 1.0 sec to 0.04 sec, dot lifetime being equal to presentation duration in every case. Similarly, Fig. 7A and B shows that plots of orientation discrimination versus dot speed for MD bars were displaced progressively rightwards as dot lifetime was decreased from 1.0 to 0.06 sec, presentation duration being held constant at 1.0 sec. In addition, there was an increase in slope at lifetimes less than 0.5 sec. Because of the shape of the curves, the progressive rightward shift had the result that the effect of presentation duration upon orientation discrimination for MD bars was considerably larger at high dot speed than at low dot speeds (Fig. 6). In Fig. 7 the progressive rightward shift combined with slope increase caused the effect of dot lifetime upon orientation discrimination to be considerably larger at low dot speeds than at high dot speeds. (This result can be verified by comparing the vertical spread of points at different speeds in Figs. 6 and 7.) The data of Figs. 6 and 7 can also be used to compare the effects on orientation discriminations of (1) reducing presentation duration from 1.0 sec (rightmost large solid square, Fig. 6) to 0.06 sec (rightmost solid square, Fig. 6) with (2) reducing dot lifetime from 1.0 sec (rightmost large solid square, Fig. 7) to 0.06 sec (rightmost small solid square, Fig. 7) with presentation duration held constant at 1.0 sec. The effect of presentation duration was about twice as large as the effect of dot lifetime for both subjects. Figure 5. Bar detection threshold contrast (ordinates) versus presentation duration (abscissae, ●) and versus dot lifetime (abscissae, ▲) for a dotted bar defined by luminance contrast. For presentation duration data, dot lifetime was equal to presentation duration. For dot lifetime data, presentation duration was constant at 1.0 sec. Dot speed was 0.68 deg/sec, so the relative dot speed was 1.4 deg/sec. Contrast is in the same arbitrary units as in Figs. 8 and 9. A, subject 1. B, subject 2. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 Figure 6. Orientation discrimination threshold (ordinates) versus dot speed for a dotted bar defined by relative motion for 9 presentation durations. Key: $\blacksquare -1.0 \text{ sec}$; $\spadesuit -0.64 \text{ sec}$; $\Delta -0.32 \text{ sec}$; $\Diamond -0.16 \text{ sec}$; $\Delta -0.12 \text{ sec}$; $\Box -0.08 \text{ sec}$; $\blacksquare -0.06 \text{ sec}$; $\Delta -0.04 \text{ sec}$. The vertical bars mark one standard error. A, subject 1. B, subject 2. Figure 7. Orientation discrimination threshold (ordinates) versus dot speed for a dotted bar defined by relative motion for 7 dot lifetimes. Key: $\blacksquare -1.0 \text{ sec}$; $\spadesuit -0.50 \text{ sec}$; $\Delta -0.25 \text{ sec}$; $\Diamond -0.12 \text{ sec}$; $\Delta -0.10 \text{ sec}$; $\Box -0.08 \text{ sec}$; $\blacksquare -0.06 \text{ sec}$. Presentation duration was 1.0 sec throughout. The vertical bars mark one standard error. A, subject 1. B, subject 2. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 Orientation discrimination versus dot contrast for LD bars of different presentation durations and dot lifetimes Figure 8A and B shows that plots of orientation discrimination versus dot contrast for LD bars were displaced progressively rightwards as presentation duration was decreased from 1.0 sec to 0.02 sec, dot lifetime being equal to presentation duration in every case. Because of the shape of the curves, this progressive shift had the result that the effect of presentation duration upon orientation discrimination for LD bars was considerably larger at high contrasts than at low contrasts – along the lines of the data for MD bars just discussed. In Fig. 9A and B, however, dot lifetime had no significant effect on orientation discrimination over the entire 40:1 range of dot contrasts tested. Finally, a comparison of Figs. 6, 7, 8 and 9 confirms the previous finding (Ref 182) that orientation discrimination for MD and LD bars is closely similar at long durations and dot lifetimes, provided that dot speed and dot contrast are high. Our conclusions are as follows: Orientation discrimination in the everyday visual situation The data of Fig. 2 relate to the situation described by Helmholtz where a camouflaged object is rendered visible through motion parallax created by self-motion. In particular these data relate to the question how, in the everyday visual situation, spatial discriminations are affected by the length of time for which such an MD object is viewed. In the specific case of orientation discrimination for constant dot speed and constant contrast, Fig. 2 shows that orientation discrimination threshold fell approximately tenfold as presentation duration was increased from 0.05 to 1.0 sec. Figure 2 also shows discrimination threshold improved rapidly as inspection duration was increased from about 0.05 to 0.15 sec, then more slowly as duration increased beyond about 0.15 sec. For subjects 1 and 2 discrimination was still slowly improving at the longest duration of 1.0 sec (Fig. 2A, B). Inspection duration had a much weaker effect on orientation discrimination for LD bar than for an MD bar. Similar findings have been reported for shape discrimination. ³⁴ If we can extrapolate these laboratory findings to the everyday visual situation, they imply that 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 Figure 8. Orientation discrimination threshold (ordinates) versus dot contrast for a luminance-defined dotted bar for 10 presentation durations. Key: $\blacksquare -1.0 \text{ sec}$; $\spadesuit -0.64 \text{ sec}$; $\Delta -0.32 \text{ sec}$; $\Diamond -0.16 \text{ sec}$; $\Delta -0.12 \text{ sec}$; $\Box -0.08 \text{ sec}$; $\blacksquare -0.06 \text{ sec}$; $\Delta -0.04 \text{ sec}$; $\triangle -0.02 \text{ sec}$. Contrast is in the same arbitrary units as in Fig. 5. The vertical bars mark one standard error. A, subject 1. B, subject 2. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 Figure 9. Orientation discrimination threshold (ordinates) versus dot contrast (arbitrary units) for a dotted bar defined by luminance contrast for five dot lifetimes. Key: + -1.0 sec; -0.25 sec; -0.10 sec; -0.03 sec; -0.03 sec; -0.01 sec. Contrast is in the same arbitrary units as in Fig. 5. A, subject 1. B, subject 2. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 orientation discrimination for objects rendered visible by motion parallax rapidly worsens relative to orientation discrimination for contrast-defined objects as inspection duration is reduced below about 0.15 sec. At first sight the findings just described might suggest that the neural mechanism(s) underlying orientation discrimination operate less effectively at low presentation durations and low dot lifetimes, and that this falloff of performance is more severe for MD form than for LD form. However, short presentation duration *per se* is not the only possible reason for these elevations of orientation discrimination threshold: a second possible cause is that bar visibility is reduced at short presentation durations and short dot lifetimes, and that the visibility to MD bars falls off more rapidly than the visibility of LD bars. In Helmholtz's everyday world motion parallax and also in the laboratory situation of Fig. 2 the effects of presentation duration on spatial discrimination are confounded with the effects of presentation duration on the visibility of the MD form. The next section concludes that the effect of presentation duration shown in Fig. 2 is almost
entirely due to changes in bar visibility. Orientation discrimination for bars normalized with respect to bar detection threshold Noting that the visibility of MD bars was created by the difference in dot velocity inside and outside the bar, while the visibility of LD bars was created by the difference in dot luminance between dots inside and outside the bar we used the detection threshold speed data for MD bars shown in Fig. 4 to normalize the orientation discrimination data for MD bars shown in Figs. 6 and 7, and we used the detection threshold luminance contrast data for LD bars shown in Fig. 5 to normalize the orientation discrimination data for LD bars shown in Figs. 8 and 9. Figure 10 shows the effect of presentation duration on orientation discrimination for MD bars whose dot speeds were some fixed multiple (N_S) of the relevant bar detection speed threshold. Curves are shown for 7 values of N_S (2, 4, 8, 10, 15, 20 and 25). Similarly, Fig. 11 shows the effect of dot lifetime on orientation discrimination for MD bars whose dot speeds gave the same 7 fixed multiples of the Figure 10. Orientation discrimination threshold (ordinates) versus presentation duration (abscissae) for a dotted bar defined by relative motion. Along any given curve, every point was recorded at a dot speed that was the same fixed multiple (N) of the relevant bar detection threshold. Thus, along any given curve, every point was recorded at a different dot speed. Key: \blacksquare , N=2; \spadesuit , N=4; \triangle , N=8; \lozenge , N=10; \times , N=15; \square , N=20; \blacksquare , N=25. Dot lifetime was equal to presentation duration. A, subject 1. B, subject 2. Figure 11. Orientation discrimination threshold (ordinates) versus dot lifetime (abscissae) for a dotted bar defined by relative motion. Along any given curve, every point was recorded at a dot speed that was the same fixed multiple (N) of the relevant bar detection threshold. Thus, along any given curve, every point was recorded at a different dot speed. Key to symbols as in Fig. 10. A, subject 1. B, subject 2. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 relevant bar detection speed thresholds. Figure 12 shows the effect of presentation duration on orientation discrimination for LD bars whose luminance contrasts were some fixed multiple (N_L) of the relevant bar detection luminance contrast threshold. Curves are shown for 7 values of N_L (2, 4, 8, 10, 15, 20 and 25). Similarly, Fig. 13 shows the effect of dot lifetime on orientation discrimination for LD bars whose luminance contrasts were adjusted to give the same 7 fixed multiples of the relevant bar detection luminance contrast thresholds. This way of presenting our data leads to the following conclusions: (1) the accelerating rise of orientation discrimination threshold for MD bars at low presentation durations evident in Fig. 2 (solid circles) was completely abolished when MD bar visibility was normalized relative to bar detection threshold (Fig. 10); (2) the accelerating rise of orientation discrimination threshold for MD bars at low dot lifetimes evident in Fig. 3 (solid circles) was abolished and even reversed when MD bar visibility was normalized relative to bar detection threshold (Fig. 11); (3) the rise of orientation discrimination threshold for LD bars at low presentation durations evident in Fig. 2 (open circles) was completely abolished when LD bar visibility was normalized relative to bar detection threshold (Fig. 12). These findings are consistent with the following hypotheses: (A) visibility for MD bars of different presentation durations is the same if dot speed for all the bars is the same multiple (N_S) of the relevant bar detection speed threshold; (B) bar visibility for LD bars of different presentation durations and dot lifetimes is the same if dot contrast for all the bars are the same multiple (N_L) of the relevant bar detection luminance contrast threshold; (C) the visibility of an MD bar of any given presentation duration is equal to the visibility of an LD bar of any given presentation duration or dot lifetime provided that $N_S = N_L$. Out of the four conditions tested in Fig. 10–13, only one does not follow the rule that orientation discrimination is the same for any given value of N_S or N_L. This exception is the effect of dot lifetime on orientation discrimination for MD bars where discrimination was better at short dot lifetimes when N_S was held constant (Fig. 11). This effect was in the opposite direction to the Figure 12. Orientation discrimination threshold (ordinates) versus presentation duration (abscissae) for a dotted bar defined by luminance contrast. Along any given curve, every point was recorded at a dot contrast that was the same fixed multiple (N) of the relevant bar detection threshold. Thus, along any given curve, every point was recorded at a different dot contrast. Key to symbols as in Fig. 10. Dot lifetime was equal to presentation duration. A, subject 1. B, subject 2. Figure 13. Orientation discrimination threshold (ordinates) versus dot lifetime (abscissae) for a dotted bar defined by luminance contrast. Along any given curve, every point was recorded at a dot contrast that was the same fixed multiple (N) of the relevant bar detection threshold. In general, therefore, along any given curve, every point was recorded at a different dot contrast. Key to symbols as in Fig. 10. Presentation duration was 1.0 sec. A, subject 1. B, subject 2. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 effect of dot lifetime when dot speed rather than Ns was held constant (Fig. 3). The data of Figs. 10 and 12 provide a means of addressing the question whether the absolute value of orientation discrimination threshold is approximately the same for MD and LD bars of matched visibilities over a range of visibilities and presentation durations. To a first approximation, discrimination thresholds were the same for MD and LD bars (no more than 50% difference) at high levels of visibility ($N_S = N_C = 10$ or more) though, in all cases, thresholds for MD bars were higher than for LD bars. At low levels of visibility ($N_S = N_C = 4$ or less) discrimination threshold remained higher for MD than for LD bars at all presentation durations, and for subject 1 (Figs. 10A and 12A) the difference was substantial (about 4:1). Theoretical implications: hierarchical stages of processing for MD and LD form We have previously suggested (Ref 182) that orientation discrimination for MD bars can be described in terms of the following sequence of processing stages: (Stage 1M) Orientation-tuned filters sensitive to MD (i.e. kinetic) edges that achieve figure-ground segregation and mediate detection for motion-defined form. We suppose that the orientation tuning bandwidths are considerably broader than 0.6 deg, and that all orientations are represented. (Stage 2M) An opponent-orientation stage that receives input from stage 1M and that determines orientation discrimination. In order to account for the finding that the best values of orientation discrimination for MD form are 0.3–0.6 deg (Ref 182) we suppose that discrimination is determined by the pattern of activity within the set of orientation-tuned filters. A proposed hierarchical model of orientation discrimination for LD bars and gratings is as follows. Retinal image information passes first through orientation-tuned filters that achieve figure-ground segregation by responding to bars or gratings defined by luminance contrast (stage 1L), and this first stage feeds a second, opponent-orientation, stage that determines orientation discrimination (stage 2L) (Refs 145, 155). The model is intended to explain the discrepancy between the 0.3–0.6 deg best values of orientation discrimination and the 10–20 deg orientation tuning 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 bandwidths of psychophysical channels in human or of striate cortical neurons in monkey.⁷⁻¹¹ An alternative model has been expressed in line-element rather than opponent-process format.¹²⁻¹⁴ In principle, the two kinds of model are equivalent when both are linear. However, they are not necessarily equivalent when they are nonlinear.¹⁵ But in the present context a more important difference is that opponent-process models assert that there exists in the brain a physical mechanism that carries out the opponent computation, whereas this physical mechanism is not explicit in line element models.¹⁵ Here we suggest that MD bars whose dot speeds are N times above detection threshold provide the same input to the discrimination stage (stage 2M above). This hypothesis is supported empirically in the case that presentation duration is the independent variable (Fig. 10). According to this line of thought, the discrimination stage 2M for MD bars is not directly affected by presentation duration. Similarly, for LD bars, the data of Fig. 12 lead us to conclude that the discrimination stage 2L above for LD bars is not directly affected by presentation duration. For large values of N_S the effect of dot lifetime on orientation discrimination for MD bars is approximately the same as the effects of presentation duration (Figs. 10 & 11). However, for low values of N_S there are differences between the effects of dot lifetime and presentation duration upon orientation discrimination. In particular, discrimination is better for short than for long dot lifetimes in Fig. 11 rather than being worse as in Fig. 3. The most likely explanation for this reversal was that our bar detection data (Fig. 4) were incorrect so that we had overcompensated for reduced bar visibility at short durations. We therefore repeated the measurements of bar detection threshold versus dot lifetime for MD bars using a quite different procedure (see above). Detection thresholds, however, were essentially unchanged. We conclude that either the output of stage 1M is not constant for MD bars
whose visibility is normalized relative to bar detection speed threshold, or the operation of the discrimination stage 2M is more effective at shorter than at longer dot lifetimes. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 Is orientation discrimination for MD and LD bars determined by different neural mechanisms? In comparing orientation discrimination for MD and LD form we proposed the following two alternative hypotheses: (a) the same neural mechanism determines orientation discrimination for MD and LD form; (b) different and independent neural mechanisms determine orientation discrimination for MD and LD form (Ref 182). The above hypotheses on orientation discrimination focus on one aspect of the broader question whether spatial discrimination in general are determined by different neural mechanisms for MD and LD form. In this more general context, data on normally-sighted subjects that are not consistent with the strongest form of hypothesis (a) include the effects of dot density on visual acuity for MD and LD letters (Ref 190) and on vernier acuity for MD and LD bars. ¹⁶ In both cases, spatial discrimination is similar for MD and LD form at low dot densities, but is superior for LD form at high dot densities. Below we report that data on patients are definitely inconsistent with hypothesis (a) above, but are consistent with hypothesis (b). # 3.2 Long Term Aim 1.1.1 and Specific Aim 1.2.1 One paper has been published (Ref 198), one has been accepted for publication (Ref 209) and a third has been submitted (Ref 220). The broad question addressed here is whether spatial discriminations for motion-defined (MD) form and for luminance-defined (LD) form share a common neural mechanism. This question was brought to a head by our findings that the best values of orientation discrimination (Ref 182), shape discrimination (Ref 196) and vernier acuity (Ref 157) are approximately the same for MD and LD form. We have addressed the question by measuring detection and discrimination for MD and LD form in patients. Our rationale is that a *selective* loss of a given visual capability provides evidence that the capability is mediated by a separate neural mechanism (Ref 115). We have used this argument before to explain our finding that some patients with multiple sclerosis experience selective contrast sensitivity loss for low and/or intermediate spatial frequencies (Refs 64, 89) and 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 that about 20% of the normal population has visual field defects for stereomotion (Refs 159, 181). As stimuli, we used a dot pattern displayed on a PC (Ref 190). The dot pattern could contain a perfectly camouflaged MD letter (Fig. 14A). The letter could be made visible to the normally-sighted eye by moving dots inside the letter at equal and opposite speed to dots outside the letter (Fig 14B). By switching dots off outside the letter we created a dotted LD letter of variable contrast (Fig. 14C). Figures 14E-G show why we moved dots inside and outside letter at equal speeds in opposite directions. If the speeds (Fig. 14F) or directions of motion (Fig. 14G) differ, the letter can be seen by *texture contrast* so that the stimulus confounds the processing of motion contrast and the processing of texture contrast. Only for the equal-speed case (Fig. 14B) is the texture contrast cue absent. In the first study we examined 50 control subjects and 25 patients with multiple sclerosis (Ref 198) and in the second study we examined 25 control subjects and 10 patients with multiple sclerosis (Ref 209). In the first study we found that elevated speed threshold for recognizing MD letters is common (34/50 eyes). In 10 eyes, recognition for MD letters was abnormal while contrast sensitivity for the same letters was normal, and visual (Snellen) acuity was normal for solid letters of 100% and 11% contrast. In the second study, 6 of 10 patients showed impaired recognition for MD letters although detection of the same letters was normal, as was visual acuity for letters of 100% and 11% contrast, speed threshold for detecting motion, and speed threshold for discriminating leftwards from rightward motion. We conclude that: (1) spatial discrimination for MD and LD shapes are not entirely mediated by the same mechanism and intersubject differences in the ability to process MD shape is not predicted by the ability to process LD shape; (2) motion is processed in a hierarchical manner; (3) discrimination and detection can be dissociated for MD form. A limitation of these two studies is that we did not know the sites of the neural damage that Figure 14. A, a letter was perfectly camouflaged within this pattern of dots. Dot density was 25%. B, dots within the letter moved rightwards at speed V while dots outside the letter moved leftwards at the same speed V. This motion rendered the letter visible to the eye but, as illustrated here, the letter was almost invisible to the camera because the edges of the letter were defined only by an abrupt change in the direction of motion. C, a contrast-defined letter was created by switching off all the dots outside the letter. D, as for A, but dot density was 2%. E, as for B, but dot density was 2%. F, as for E except that all dots outside the letter moved horizontally. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 caused the visual loss. Therefore, we carried out a similar study on 20 control subjects and 13 patients who had experienced neurosurgery to remove unilateral hemispheric lesions. Seven patients lost ability to recognize MD letters while visual acuity for letters of 100% and 11% contrast was spared, as was speed thresholds for detecting motion and for discriminating leftward from rightward motion. Figure 15 shows tracings of axial CAT scans for these patients. The lesions are demarcated by lines. The arrow shows the area of overlap in white matter underlying striate cortex. We concluded that damage to the overlap area shown in Fig. 15 produces a specific loss of the ability to process MD form. We suggest that homologs of the so-called motion and color/form pathways (i.e. areas V1/MT/MST/7a and areas V1/V4/IT) are interconnected to form a distributed system that is important for recognizing MD form. We attribute the pattern of visual loss to damage to this system including damage to the interconnections between the cortical pathways just mentioned and possibly also the disruptions of connections between visual cortical areas and subcortical nuclei. # 3.3 Experiment 2 and Specific Aim 1.2.1 This experiment has been completed. Part of the results have just been published (Ref 169 below: *Perception*, 1991, 20, 315-336) and part has been submitted (Ref 217 below). We generated a camouflaged rectangular shape that was visible by motion alone. The rectangular area was rendered visible by moving the dots inside the rectangle obliquely downwards to the left at a constant speed that was equal and opposite to the speed of the dots in the remainder of the pattern. The reason for choosing oblique motion was to ensure that the rectangle's vertical and horizontal edges were all defined by the same mix of shearing and compressive motion. Although the rectangle was visible to the eye, a photographic time exposure did not reveal it (Fig. 16B). Contrast-defined rectangles were created by switching off all dots outside the rectangle (Fig. 16C). The ratio between the lengths of vertical and horizontal sides had 10 possible values, and these were presented randomly. The subject's task was to press one of two buttons depending on Figure 15. The outlines mark the lesion boundaries delineated by CT in 7 patients with unilateral cerebral hemisphere damage who had abnormal speed thresholds for recognizing motion-defined letters. Lesions are plotted onto 6 templates of axial brain anatomy. The templates represent slices approximately 8 mm apart, oriented 15 deg above the orbitomeatal line. Ventricles are marked in solid black. Brodmann numbers of adjacent cortical areas are marked. For explanatory purposes, all lesions are plotted only the right hemisphere. Hatching shows regions of overlap of 3 or more lesions. The black areas indicated by arrows in B and C indicate overlap between the lesions in 5 patients. Figure 16. A – Photograph of a typical random dot pattern. The test rectangle was perfectly camouflaged. The outer circle marks the edge of the superimposed adapting field. B – Dots within the rectangle and outside the rectangle were moved at equal and opposite speeds. Although the rectangle was evident to the eye, it was not evident to the camera. C – All dots outside the rectangle were switched off to create an uncamouflaged rectangle. Aspect ratio was defined as a/b. Figure 17. Dissociation of aspect ratio a/b from area and from any given linear dimension. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 whether the longer sides were vertical or horizontal. To ensure that both dimensions must be compared in order to perform the task correctly, different areas of rectangle were interleaved randomly as illustrated in Fig. 17. To ensure that the distance of any edge from the boundary of the display provides no cue to shape, the rectangle's location was jittered randomly. Shape discrimination threshold was measured by two-alternative forced choice and Probit analysis. We measured shape discrimination as a function of dot speed and dot contrast for camouflaged dotted rectangles and for uncamouflaged dotted rectangles. Figure 18 shows that, when dot speed and contrast were both high, aspect ratio discrimination threshold was as acute for a motiondefined rectangle as for a contrast-defined rectangle and, at 2-3%, corresponded to a change of side length of about 24 arc sec. This is a remarkable visual performance, given that the mean dot separation was about 360 arc sec. Discrimination collapsed at low dot speeds and could not be measured at
speeds less than about 0.1–0.2 deg/sec for motion-defined rectangles, but was almost unaffected by dot speed for contrast-defined rectangles. To explain how the visual system can dissociate changes of shape from changes of area we invoked a previous suggestion that the visual system contains a mechanism that compares the separation of pairs of contours along perpendicular azimuths. To explain the coincidence of shape discrimination thresholds for motion-defined and contrast-defined rectangles we suggest that in early visual development the underlying neural mechanisms are driven by the same environmental and behavioral pressures towards a common endpoint. In other words, "spatial vision is spatial vision" and the performance required for eyehand coordination that is dictated by the outside environment independently of how the eye segregates figure from ground. This idea could also explain why orientation discrimination asymptotes towards the same value for motion-defined and contrast-defined bars. ### 3.4 Experiment 5 We have constructed a faster version of our dot generator (Ref 130) suitable for binocular stereoscopic stimulation. The new dot generator drives two electrostatic (Tektronix type 608) Figure 18. Ordinates plot shape discrimination thresholds D (a/b) expressed as a percentage, where D (a/b) is the smallest discriminable change in the ratio D (a/b). Abscissae plot dot speed (relative speed is twice dot speed). Open circles are for motion-defined rectangles and filled circles are for uncamouflaged rectangles. Dot contrast in B and D was 0.6 log units less than in A and C. The leftmost filled circle in each panel is for zero speed. A,B—subject 1. C,D—subject 2. Viewing was monocular. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 monitors that have been mounted in a rigid Wheatstone mirror stereoscope. Left and right eyes see independent 100 frames/sec displays. The equipment has been calibrated for the two protocols of Experiment 5, and preliminary measurements are underway. ## 3.5 Experiment 6 This experiment is about one-third completed. One paper has been submitted to *Vision Research* (Ref 216 below) and an abstract has been submitted for ARVO 1992. A second paper is in preparation (Ref 232 below). It was pointed out by $Hoyle^{31}$ in an astronomical context that, if an object is moving at constant speed along the line of sight towards the eye, then at time t = 0 $$T_0 = \frac{\theta_0}{\dot{\theta}_0}....(1)$$ where T_0 is the time to contact at time t=0, θ_0 is the object's angular subtense (i.e. the angle subtended at the eye by the object) at time t=0, and $\dot{\theta}_0$ is the object's rate of increase of angular subtense at time t=0. (We assume that θ_0 is small.) In previous AFOSR-funded research we suggested that this geometrical fact is used by pilots (Refs 81, 86, 93, 104, 115, 119, 126) following a previous suggestion by Lee that the equation is used in driving 17 (see also 18-22 and Refs 163, 200). There is evidence that the visual pathways of humans and animals contain neural mechanisms sensitive to the angular size (θ) of a stimulus. 23-26 Also, we and others have reported evidence for neural mechanisms sensitive to the rate of expansion, $\dot{\theta}$ (Refs 72, 83-85, 90) and 27-29. However evidence that the visual pathway is separately sensitive to θ and to $\dot{\theta}$ does not necessarily imply either (A) that the visual pathway contains a mechanism sensitive to the unitary higher-order variable (θ / $\dot{\theta}$), nor (B) that such a mechanism is important in judging time to contact. We have carried out an experiment designed to find whether subjects are sensitive to the unitary higher-order variable (θ / θ) by requiring subjects to make discriminations based exclusively on differences in (θ / θ). We have also measured discrimination thresholds for rate of expansion (θ) with changes in time to contact removed as a reliable cue. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3I 1P3 First we must derive the relationship between time t and the angular subtense (θ_t) of an object that is moving towards the eye at constant speed along the line of sight. Figure 19 illustrates the case that a rigid spherical object of diameter 2S is moving along the z axis at constant linear speed v_z towards the eye. For our present purpose we define the z axis as the line passing through the eye's two nodal points. The situation depicted in Fig. 19 is at time t, when the object's angular subtense is $2\theta_t$ and the time to contact is T_t . (More exactly, T_t is the time that would be taken for the center of the sphere to reach the first nodal point N_1 .) From Fig. 19 we have $$\tan \theta_t = \frac{S}{D_t}.$$ (2) and $$D_t = D_0 - v_z t$$(3) where D_0 and D_t are, respectively, the distance from the center of the sphere to point N_1 at time t = 0 and at time t. From equations (2) and (3) $$\tan \theta_t = \frac{S/D_0}{1 - (v_z/D_0)t}$$(4) Since $$v_z T_0 = D_0$$(5) where T_0 is the time to contact at time t = 0, we have from Equation 4 the exact solution $$\tan \theta_{t} = \frac{\tan \theta_{0}}{1 - t/T_{0}}.$$ (6) where θ_0 is the object's angular subtense at time t = 0. Figure 20 is a graph of Equation 6. As t approaches T_0 , the value of θ_t increases at an accelerating rate, and reaches 90 deg at $t = T_0$. For practical reasons it was necessary to limit the percentage variation of angular size in our experiments, so we restricted ourselves to the part of the Fig. 20 curve between t = 0 and $t = 0.66T_0$. A bright solid sharp-edged constant-luminance square was generated on a monitor (a Tektronix model 608 with P31 phosphor) by a special-purpose hardware square generator of our own design and construction. The frame rate was 104 Hz and there were 240 lines. The luminance Figure 19. A rigid sphere of diameter 2S is shown moving at constant speed v_z along a line passing through the first nodal point of the eye (N_1) . At time t the distance from N_1 to the center of the sphere is D_t , and the angular subtense of the ball at the eye is $2\theta_t$. Figure 20. Ordinates plot the angular radius of the sphere shown in Fig. 1 as it approaches the eye at constant speed along the line of sight. Abscissae plot time as a fraction of T_0 . In the case illustrated, angular radius is 2.0 deg at t = 0. Key: θ_t , the sphere's angular radius at time t; T_0 , time to contact at time t = 0. Department of Psychology #### FACULTY OF ARTS 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3I 1P3 of the square was 86 cd/m². Because the square generator was of analogue electronic design rather than being a pixel-based system, square size could be altered by indefinitely small amounts and indefinitely slowly while sampling remained at 104 Hz. We removed rate of expansion as a reliable cue, leaving time to contact as the only reliable cue for the subject's task. The manipulation can be understood by referring to Fig. 20. As in Experiments 1 and 2, before each presentation the computer selected one of a set of 10 Fig. 20 curves, each with the same scaling factor for the ordinate, but a different value of time to contact (T_0). This set of 10 curves confounded differences in time to contact with differences in rate of expansion. In Experiment 3, however, the ordinate in Fig. 20 was then multiplied by one of 256 randomly-selected scaling factors between limits (1+r) and (1-r). Figure 21B shows the effect of applying three different scaling factors to the ordinate of Fig. 20. Curves a, b and c all have the same value of T_0 but, at any given time along the abscissa, the value of $\tilde{\theta}$ (i.e. the slope of the curve) is different. For example, the dashed lines show how $\tilde{\theta}_0$ differs for a, b and c. The magnitude of r was set by the experimenter so that the lowest possible rate of expansion at the shortest of the 10 times to contact was lower than the highest possible rate of expansion at the longest of the 10 times to contact. This overlap effectively removed variations in $\tilde{\theta}_0$ as a reliable cue to the subject's task. We then confirmed by calibration that the random variation of presentation duration was still sufficiently large to ensure that variations in $\Delta \theta$ were not a reliable cue to the subject's task. Filled circles in Fig. 22A,B show that, for values of T_0 of 1.0, 2.0 and 4.0 sec, discrimination threshold ranged from 7.0% to 9.4% for subject 1 and from 12.2% to 12.9% for subject 2. Thus, for the mean T_0 of 1.0 sec, the best discrimination thresholds were 0.07 sec, and 0.12 sec for subjects 1 and 2 respectively. In the next experiment we removed trial-to-trial variations in time to contact as a reliable cue, leaving changes in rate of expansion as the only reliable cue to the subject's task. The manipulation can be understood by referring to Fig. 20. As in Experiment 1 and 2, before each Figure 21. The angular subtense of the stimulus square (20) was plotted along the y-axis. Time was plotted along the x-axis. These are experimentally-measured calibration curves. A – three different scaling factors were applied to the x-axis, leaving the y-axis unchanged. This gave three values of time to contact (T₀). The vertical arrows show (T₀)_a, (T₀)_b and (T₀)_c for curves a, b and c respectively. B – three different scaling factors were applied to the y-axis, leaving the x-axis unchanged. This produced a yoked variation of the values of θ and $\dot{\theta}$ at any given time (t), while T₀ remained constant. C – the x- and y-axes were scaled simultaneously by the same factor. This produced a yoked variation of θ_0 and T₀ such that $\dot{\theta}_0$ remained constant. Curves a, b and c are for three different scaling factors. Figure 22. Ordinates plot
discrimination threshold for time to contact as a Weber fraction ($\Delta T/T$, filled circles) and discrimination threshold for rate of angular expansion as a Weber fraction ($\Delta \theta / \theta$, open circles). Abscissae plot mean time to contact. Key: ΔT is discrimination threshold for time to contact with variations in rate of expansion removed as a cue, and $\Delta \theta$ is discrimination threshold for rate of isotropic expansion with variations in time to contact removed as a cue. Open squares – both rate of expansion and time to contact were available as cues. Open triangles – rate of expansion, time to contact and $\Delta \theta$ were available as cues, where $\Delta \theta$ was the change in size during the trial. Results are shown for two subjects. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 presentation the computer selected one from a set of 10 Fig. 20 curves, each with the same scaling factor for the ordinate, but a different time to contact (T_0) on the abscissa, and this set of 10 curves confounded differences in time to contact with differences in rate of expansion. In Experiment 4, ordinate and abscissa in Fig. 20 were then simultaneously multiplied by the same scaling factor so that the magnification of the Fig. 20 graph was varied isotropically. It follows that θ_0 remained invariant. This scaling factor was one of 256 randomly-selected numbers between (1+s) and (1-s). Figure 21C illustrates the effect of this manipulation for three values of s. The dashed lines show that the initial slope (i.e. θ_0) was the same for curves a, b and c. The experimenter selected the value of s so that the lowest possible value of T_0 for the lowest of the 10 values of θ_0 . This overlap removed variations of T_0 as a reliable cue to the subject's task, leaving variations of θ_0 as the only reliable cue. After introducing this random variation of T_0 , we confirmed by calibration that the random variation of presentation duration were sufficiently large to ensure that $\Delta\theta$ was effectively removed as a cue to θ_0 . Our conclusions were as follows. When $\Delta\theta$ and rate of expansion ($\mathring{\theta}$) were removed as reliable cues, subjects were still able to perform the discrimination task. Discrimination threshold for variations in the ratio (θ / $\mathring{\theta}$) was about 8% and 12% for our two subjects. (Expressed as a percentage in this way, discrimination threshold for (θ / $\mathring{\theta}$) was similar to discrimination threshold for rate of expansion; see ordinate scale in Fig. 22.) We conclude that the human visual pathway contains a mechanism that is directly sensitive to the ratio (θ/θ) rather independently of the absolute values of θ and θ . From Equation 1, it follows that this mechanism is directly sensitive to differences in the time to contact for a rigid object approaching at constant speed down the line of sight. For our two subjects, discrimination threshold for the ratio (θ/θ) remained at approximately the same percentage when mean time to contact was changed from 1.0 sec through 4.0 sec so that, just like discrimination threshold for rate of 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 expansion, this discrimination obeyed a kind of Weber's law. These findings can be explained in terms of a model (Fig. 23) proposed over 10 years ago in a context quite different from that of time to contact data (Refs 72, 90, 92). Our rationale here is that the value of $(\theta/\dot{\theta})$ provides an unequivocal index of time to contact with an approaching object only if the value of (θ/θ) in the object's retinal image does not vary with azimuth. Such selectivity requires a filter that responds to isotropically-expanding retinal images, but rejects retinal images whose expansion is not isotropic. The MID filter in the previously-proposed model illustrated in Fig. 23 has just this property (see below) and, according to Equation 9, produces output z only when it receives identical inputs from relative motion filters for different azimuths. If, for our present purpose, we make the further assumption that in this situation the amplitude of z is equal to any one of the equal inputs, i.e. $$z = A(\frac{\theta_V}{\mathring{\theta}}) = A(\frac{\theta_H}{\mathring{\theta}}) , \text{ etc.}$$ $$z = \frac{A}{T}.$$ (8) then $$z = \frac{A}{T}$$(8) where T is time to contact and A is a constant. In words: the amplitude of the motion-in-depth output of the MID filter is inversely proportional to time to contact. Figure 23 illustrates a model of changing-size processing that was based on data obtained in several empirical studies on threshold elevations and aftereffects produced by adapting to changing-size stimuli (Refs 72, 75, 81-83, 85, 92, 125, 154). The dotted outline in Fig. 23 represents the outer boundary of a rectangular horizontal/vertical untextured retinal image whose size is changing. The speeds of the upper and lower edges are encoded by local motion filters (LM) that prefer vertical motion and whose outputs are labelled a and b. The magnitudes of a and b are linearly proportional to local retinal image speed and the polarities depend on whether motion is upwards or downwards. Similarly, the speed and direction (leftwards versus rightwards) of the rectangle's vertical edges are encoded by local motion filters that prefer horizontal motion. Outputs a and b feed a one-dimensional relative motion filter whose output, k₁(a-b), is linearly proportional to the algebraic difference in the absolute vertical velocities of the retinal image's horizontal edges Figure 23. Model of the processing of changing size and encoding of time to contact. The boundaries of a solid untextured rectangular retinal image are shown dotted. Key: LM – filters that respond to local motion along the directions arrowed. Their outputs (a, b, c & d) assume an amplitude that is linearly proportional to local speed and a sign that signals the direction of motion. RM – one-dimensional relative motion filters whose outputs signal the speed and direction of relative motion along some given retinal azimuth. MID – two-dimensional relative motion filter that is strongly excited by isotropic expansion of the dotted retinal image, i.e. when k1(a-b) = k2(c-d). The amplitude of the output of filter MID is equal to any one of its inputs from RM filters and, therefore, is inversely proportional to time to contact. Modified from Fig. 1 in Ref 82 and Fig. 2 in Ref 154. Department of Psychology #### FACULTY OF ARTS 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 (Fig. 1, Ref 85). Similarly, outputs a and b feed a one-dimensional relative motion filter whose output, k₂(c-d), is linearly proportional to the algebraic difference in the absolute horizontal velocities of the retinal image's vertical edges. Evidence for the existence of relative motion (RM) stages that are separate from local motion (LM) stages is as follows: (1) For rectangles less than about 1.5 deg wide, visual thresholds for detecting isotropic two-dimensional oscillations of size are much more elevated by adapting to isotropic two-dimensional oscillations of size than by adapting to oscillations of location (i.e. oscillatory motion). This is the case even when each edge of the adapting rectangle, viewed in isolation executes exactly similar oscillations (Ref 72). A similarly selective threshold elevation is observed for detecting one-dimensional oscillations of the rectangle's width (Refs 83, 92). With no further evidence one might conclude that this threshold elevation is selective to the phase difference between the oscillations of the rectangle's opposite edges (i.e. antiphase versus inphase oscillations). But (2) threshold elevation for detecting isotropic two-dimensional oscillations of size is unaffected by adding oscillatory translational motion to the adapting stimulus, i.e. the threshold elevation is selective, not to the phase difference per se, but rather to the velocity difference between opposite edges (Ref 90); (3) visual threshold for detecting oscillatory translational motion is comparatively unaffected by adapting to either isotropic two-dimensional oscillations of the rectangle's size or one-dimensional oscillations of the rectangle's width (Refs 72, 83, 85, 92); (4) adapting to oscillatory translational motion of the rectangle produces a comparatively small elevation of detection threshold, whether the test stimulus is oscillatory translational motion of isotropic two-dimensional oscillations of size (Ref 72). (Note that the above findings are all for oscillatory changes in the size and/or location of a solid, untextured rectangular stimulus.) The selective threshold elevations just described cannot be understood entirely in terms of local motion detectors. Rather, they can be understood if, at least for untextured solid targets subtending less than 1.5 deg, changes in retinal image size are processed by adaptable one- 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 dimensional filters (RM in Fig. 23) sensitive to the velocity difference between opposite edges. These one-dimensional filters can be regarded as filters for relative motion that reject translational motion information. In Fig. 23, pairs of one-dimensional filters feed a two-dimensional filter (MID) that compares inputs $k_1(a-b)$ and $k_2(c-d)$. The activity of the MID filters suppress the perception of changing-size and leads to a perception of motion-in-depth when $$\frac{\theta_{V}}{\dot{\theta}_{V}} = \frac{\theta_{H}}{\dot{\theta}_{H}}.$$ (9) This equation characterizes the retinal image of a **rigid** nonrotating object moving in depth along the line of sight and, therefore, the MID filter can be regarded as imposing a rigidity constraint (Refs 82, 92). One simple way of modelling
sensitivity to this two-dimensional relation would be to assume that k_1 and k_2 are directly proportional to the instantaneous size of the stimulus rectangle so that, for example $$k_1 = \frac{K}{\theta_H} \qquad (10)$$ and $$k_2 = \frac{K}{\theta_V} \qquad (11)$$ where K is a constant. In addition to imposing a rigidity constraint, Equations 10 and 11 also account for the finding that the selective elevation of changing-size threshold produced by adapting to changing-size falls off rapidly as the mean size of the adapting rectangle is increased and cannot be measured for rectangles wider than about 1.5 deg (Ref 83). Experimental evidence for the existence of a separate two-dimensional motion filter with the properties just described include the following findings: (1) the initial aftereffect produced by adapting to a changing-size stimulus is a pure motion-in-depth aftereffect if $$\frac{\theta_{V}}{\dot{\theta}_{V}} = \frac{\theta_{H}}{\dot{\theta}_{H}} \qquad (12)$$ for the adapting stimulus and a pure changing-size aftereffect if 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 $$\frac{\theta_{V}}{\mathring{\theta}_{V}} \neq \frac{\theta_{H}}{\mathring{\theta}_{H}} \tag{13}$$ (Ref 82); (2) The motion-in-depth aftereffect, but not the changing-size aftereffect, produced by adapting to changing-size can be cancelled by oscillating or ramping changes of binocular disparity (Ref 85); (3) there is a nonlinear interaction between adaptation to vertical and horizontal one-dimensional relative motion, and this interaction is maximum when $$\frac{\theta_{V}}{\dot{\theta}_{V}} = \frac{\theta_{H}}{\dot{\theta}_{H}}.$$ (14) (Ref 92). Implications for Aviation. Accurate and precise judgments of time to contact are crucial in flying fixed wing aircraft (landing, aircraft avoidance, terrain avoidance in low-level flight) and in flying rotary-wing aircraft, especially in low-level and nap-of-the-Earth flight (terrain avoidance). A geometrical cue is available for judging time to contact, namely the ratio $(\theta/\dot{\theta})$. We report here evidence that the human visual pathway contains a neural mechanism sensitive to the ratio $(\theta/\dot{\theta})$ rather independently of θ and $\dot{\theta}$. We also report a method for measuring intersubject differences in discriminating time to contact $(\theta/\dot{\theta})$ independently of other cues that may be present in the laboratory situation, but which are largely artifactual in the real flying environment. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 ## 3.6 Experiment 7 We have extended the work on nonlinear systems characterization by the two-sinewave method described in the Final Report for 1987-90, and have developed a mathematical approach for calculating the response of a sum of two sinewaves input for a sequence of n cascaded rectifiers, each of which is preceded and followed by a linear frequency-dependent filter. We are investigating the value of such rectifier/filter sequences as nonlinear multi-neuron models. We are now developing software that will allow the predicted responses of different cascaded sequences to be plotted graphically as graphs of amplitude and phase of cross-modulation terms versus the amplitudes of the two inputs. [The cross modulation terms in the output have discrete frequencies $(nF_1 \pm mF_2)$, where F_1 and F_2 are the input frequencies and n and m are integers.] # 3.7 Experiment 8 We have developed a mathematical procedure for calculating the amplitudes and phases of the discrete frequency terms in the output of a single rectifier whose input is the sum of two amplitude modulated (AM) sinusoids. The mathematical treatment covers the suppressed-carrier and unsuppressed-carrier cases for linear, compressive and accelerating rectifiers. We have also treated the case where the two AM signals have different carrier frequencies. This is new mathematics, and a first draft has been prepared for submission to an applied mathematics journal (Ref 236). This mathematical research is directly applicable to psychophysical research on hearing and also to testing neural models of audition by recording magnetic and electrical responses of the brain. In particular, according to Hudspeth's empirical data, the transducer function of the hair cells of the inner ear approximates a compressive rectifier. We have calculated the discrete frequency terms that would result from feeding the hair cell transducer function with the sum of two AM tones. This theoretical treatment successfully predicts the strikingly nonlinear phenomenon we found in the electrical and magnetic brain responses evoked in human by applying the sum of two AM tones to one ear (Refs 173, 177, 188). In particular, the theory predicts: (1) that one AM tone, $y_1 = A(\sin 2\pi F_1 t)(\sin 2\pi f_1 t)$, will generate a response at frequency $2f_1$ (F_1 is the carrier frequency 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 and f_1 the modulation frequency); (2) that two AM tones, $y_1 = A(\sin 2\pi F_1 t)(\sin 2\pi f_1 t)$ and $y_2 = B(\sin 2\pi F_2 t)(\sin 2\pi f_1 t)$, when added and fed to one ear will produce no power at frequencies $2F_1$ or $2F_2$, but will produce a term of frequency (F_1+F_2) ; (3) that when the two AM tones have different carrier frequencies so that a wave $[A(\sin 2\pi F_1 t)(\sin 2\pi f_1 t) + B(\sin 2\pi F_1 t)(\sin 2\pi f_1 t)]$ is applied to one ear, there will be no power at $2F_1$, $2F_2$ or (F_1+F_2) . Rather the (F_1+F_2) term will split into two parts, one of frequency $[(F_1+F_2) - (f_1-f_2)]$ and the other of frequency $[(F_1+F_2) + (f_1-f_2)]$. We had observed all three nonlinear phenomena in electrical and magnetic brain recording some years ago (Refs 173, 177, 178). Indeed, the splitting of the (F_1+F_2) term can be as narrow as 0.002 Hz (when $f_1-f_2 = 0.001$ Hz) (Ref 177). But previously we had no theoretical explanation. We are writing this work up for submission to the *Journal of the *coustical Society of America* (Ref 237). The significance of this line of research is that it offers a means of inferring the shape of the human hair cell transducer function noninvasively in normal physiological conditions. # 3.8 Experiment 10 We have recorded the topographical distributions of human magnetic brain responses to 40 Hz flicker and compared them with the distributions of responses to luminance-defined form and to coherent motion. These three responses have different sites of origin in striate and prestriate cortex. A report on this work is in preparation (Ref 240). ## 3.9 Experiment 12 We have succeeded in recording magnetic brain responses to texture-defined form. We have characterized their waveform and compared their site of origin in the brain to the site of origin of responses to luminance-defined form. When attempting to record brain responses to texture-defined form it is by no means sufficient to merely record responses evoked by stimulating the eye with texture-defined form, because such a stimulus confounds a change in local texture with a change in spatial form. We have developed a procedure for unconfounding these two variables. The principle is that texture-defined Department of Psychology ## FACULTY OF ARTS 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 form is made to appear by abruptly changing the orientations of a subset of short line elements. Whether the texture appears or disappears is determined by the orientation of a subset of constant line elements. Thus, the appearance of form can be dissociated from the change in local texture that creates the form. We have used this procedure to map and estimate source locations for responses to texture-defined form and for the change in local texture that creates the form. Stimulation was to a single macular quadrant (lower left). Figure 24 shows averaged transient responses to the appearance and disappearance of texture-defined form recorded from 7 coils (BTi 7-channel magnetometer). Figure 25 shows a map of the appearance response. Using analogous reasoning we have recorded magnetic responses to luminance-defined form and to the local luminance changes that define the form. Figure 26 shows averaged transient responses to the appearance and disappearance of texture-defined form recorded from 7 coils. Figure 27 shows a map of the appearance response. The texture-defined form response contains components that are quite different in topography from the components of the luminance-defined response and with different sites of origin within the brain. When only one retinal quadrant was stimulated, and stimulation restricted to the macula, the distribution of the field approximated closely to a single-dipole field whose site of origin was different from that of responses to luminance-defined pattern. We conclude that different brain sites respond to spatial form defined by texture and by luminance even when the spatial form and retinal site of stimulation is identical in the two cases. An abstract has been submitted for ARVO 1992, and a paper is in preparation (Ref 239). # 3.10 Experiment 13 We have obtained objective evidence for an audio-visual convergence area in the human brain. Subjects were stimulated by a 1000 Hz tone that was amplitude-modulated at F_A Hz while they simultaneously viewed a light flickering at F_V Hz. The magnetic field of the brain was recorded and analyzed at ultra-high resolution (0.004 Hz) using our nondestructive zoom-FFT technique described in the Final Report for 1987–90 and Refs 183 and Book 2. Figure 28 shows a Figure 24. Magnetic responses of the brain to texture-defined form. The stimulus was the appearance and disappearance of a 4 x 4 deg pattern of checks. The 7 coils were centered 5 cm obliquely to the upper right of the inion. Figure 25. Magnetic responses of the brain to texture-defined form. A map of the magnetic field evoked by the appearance of texture-defined
form. See Fig. 24 for the response waveforms. This map was derived from responses at 56 coil locations over the head. Figure 26. Magnetic responses of the brain to luminance-defined form. The stimulus was the appearance and disappearance of a 4×4 deg pattern of checks. The 7 coils were centered on the inion. Figure 27. Magnetic responses of the brain to luminance-defined form. A map of the magnetic field evoked by the appearance of luminance defined form. See Fig. 26 for the response waveforms. This map was derived from responses at 58 coil locations over the head. Figure 28. Magnetic brain response from audio-visual integration area. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 cross-modulation term of frequency $(3F_V - 2F_A)$ in the magnetic brain response. This response must have been generated after convergence of auditory and visual signals, because the visual pathway could only have generated harmonics of F_V , and the auditory pathway could only have generated harmonics of F_A . We are now mapping these audio-visual interaction terms over the head, and attempting to localize the source of the interaction within the brain. ## 3.11 Experiment 15 We have developed a circuit for converting single-unit responses into an analog voltage proportional to instantaneous firing rate that can be analyzed by our nondestructive zoom-FFT procedure described in the Final Report for 1987–90. We have made preliminary recordings of single unit responses to sinewave gratings from area 17 of cat, but found that spike rates were too low for analysis. On the other hand, local cortical slow wave responses to sum of two sinewave stimulation were successfully analyzed by zoom FFT in a way that looks suitable for our nonlinear systems characterization approach (Ref 179). We plan to record from area 18 where spike firing rates should be higher. # 3.12 Experiment 16: Medical Tests ### 3.12.1 Parkinson's Disease We measured psychophysical contrast threshold for: (1) a 3.5 c/deg sinewave grating when counterphase-modulated (8 Hz) and when temporally unmodulated, i.e. static; (2) speed threshold for 75% reading accuracy for our motion-defined letter test (Ref 190); (3) Snellen acuity. Measurements were carried out while the patient was on medication, then after discontinuing medication overnight, then 1 hour after taking medication orally. The "off medication" measurements showed a large sensitivity loss for the temporally-modulated grating that was not shown for a static grating of the same spatial frequency. Contrast sensitivity was restored to normal (>10 SD change) within 1.5 hours of re-starting medication. We conclude that the loss of contrast sensitivity was specific to temporally-modulated gratings and this loss was not caused by long-term damage to contrast- 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 sensitive neurons but, rather, directly by an absence of systemic dopamine. The relevance of this finding is that we (Ref 166) and others³⁴ had independently found that many patients with Parkinson's disease have contrast sensitivity loss specifically for temporally-modulated gratings of low spatial frequency. A single-case report is in preparation (Ref 240). A problem for the ongoing US/Canadian DATATOP multi-center trial of the drug Deprenyl in the management of Parkinson's disease is the lack of an objective index of the progress of the disease. We are comparing motion-defined letter test results and contrast sensitivity results with other methods of assessment in a longitudinal study, now in its second year. # 3.12.2 Multiple Sclerosis (MS) and Brain Lesions Results of studies using our motion-defined letter test on patients with MS and following neurosurgery are reported under 3.3 above. # 3.12.3 Amblyopia We have found that our motion-defined letter test picks up visual damage in the "unaffected" eye of all patients tested. A paper has been submitted (Ref 222) and an abstract submitted for ARVO 1992. We have found that a combination of Snellen (line) acuity and results on our repeat-letter test sub-classifies children with amblyopia. We suggest that it identifies a sub-class whose Snellen acuity loss is due to defective selection/control of gaze rather than abnormal neural lateral interactions. If this is verified, there are important implications for the choice of therapy. A paper has been submitted (Ref 223). # 3.12.4 Ocular Hypertension (OHT) and Early Glaucoma We are writing a paper on preliminary evidence suggesting that our motion-defined letter test can identify patients with OHT who will go on to develop glaucoma (Ref 230). # 3.12.5 Glare Susceptibility in Cataract A group of elderly patients, some of whom have cataract in addition to the expected lens Department of Psychology ### FACULTY OF ARTS 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 changes associated with aging, have been studied using our glare susceptibility test (see 3.13 below). Some elderly patients have glare susceptibilities that compare well with normally-sighted subjects 10 or even 20 years younger. Those with cataract evident to slit lamp examination have glare susceptibilities that do not seem to be simply correlated with the appearance of the cataract. Preliminary findings were reported at ARVO 1991, and a paper has been submitted (Ref 224). # 3.13 Glare susceptibility test We have developed a glare susceptibility test. The rationale can be understood as follows. The effect of scattered-light glare is to reduce letter-reading acuity, the reduction increasing progressively as letter contrast is progressively reduced. In the everyday visual environment this translates as follows. A low level of scattered-light glare produces a selective invisibility of small, low-contrast objects in the environment. With increased glare, low-contrast objects of all sizes disappear and small objects of medium contrast disappear also. A further increase of glare renders invisible small objects of fairly high contrast unrecognizable or invisible as well as rendering invisible low- and medium-contrast objects of all sizes. A still higher level renders invisible or unrecognizable all objects except large objects of fairly high contrast and large and medium-sized objects of high contrast. The procedure is to measure visual acuity in minimal-glare conditions using the Regan Low Contrast Acuity Charts. Five charts are available, with letters of 100%, 50%, 25%, 11% and 4% contrasts (Fig. 29A,C). Then the measurements are repeated using a glare source (Fig. 29B,D). Acuities are defined as the letter size for 75% correct letter reading, and are obtained from the psychometric functions by Probit analysis. We define the Glare Susceptibility Ratio as the ratio between visual acuities under minimalglare and with-glare conditions. There is a separate glare susceptibility ratio for each of the five letter contrasts (Fig. 30). The ratios for 4% and 11% contrast are very sensitive measures. They reveal large intersubject differences in normally-sighted subjects in the 10–25 years age group. Figure 29. Decimal visual acuity (ordinate) versus letter contrast (abscissa) without glare and with glare for 15 subjects aged 19 to 25 years and for 15 subjects aged 45 to 55 years. Both axes are logarithmic. Viewing was monocular and one eye per subject was tested. Each symbol represents one eye. In the 45 to 55 years age group O = the eye shown in Fig. 30 to be least affected by glare, and $\square =$ the eye most affected by glare. NM on the ordinate signifies "not measurable). Figure 30. Glare susceptibility ratio (ordinates) versus letter contrast (abscissae) obtained from the Fig. 29 data. Both axes are logarithmic. Glare susceptibility ratio was defined as decimal visual acuity for the no-glare condition divided by decimal visual acuity measured in the glare condition. A -15 subjects in the 19-25 year age group. B -15 subjects in the 45-55 year age group. Viewing was monocular. Each symbol represents one eye. NM on the ordinate signifies that acuity under glare conditions was so low that the ratio was not measurable. O = the eye that was least affected by glare, and \square = the eye that was most affected by glare. Department of Psychology ## FACULTY OF ARTS 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 The glare susceptibility ratio is an index of disability glare that might be of use in quantifying intersubject differences in glare disability in relation to night-time driving or driving in low-sun conditions. The index might also be of use in screening aircraft pilots who are required to fly in high-glare environments. All entrants to Canadian Forces flying school are being screened with this test to find whether results predict which individuals will encounter problems in flying over snow-covered terrain, and especially in terrain avoidance. The test is being used at about 100 test sites in the USA in a multi-center study on multi-focal cataract implant lenses under FDA auspices. The test has been described and its possible use in aviation pointed out, citing AFOSR sponsorship (Refs 195, 214). We supply the software gratis to research laboratories citing AFOSR sponsorship (see below). 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 ### 3.4 References - 1. Julesz B (1971) Foundations of Cyclopean Perception. Chicago: Univ. of Chicago Press. - 2. Gray CM, Konig P, Engel AK & Singer W (1990) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. *Nature* 338, 334-337. - 3. Thurston SE, Leigh RJ, Crawford T, Thompson A & Kennard C (1988) Two distinct deficits of visual tracking caused by unilateral lesions of cerebral cortex in humans. *Ann Neurol* 23, 266-273. - 4. Morrow MJ & Sharpe JA (1990) Cerebral hemispheric localization of smooth pursuit asymmetry. *Neurology*, in press. - 5. Zihl JD, Von Cramon D & Mai N (1983) Selective
disturbance of movement vision after bilateral brain damage. *Brain* 106, 313-340. - 6. Van Essen DC (1985) Functional organization of primate visual cortex. In Peters A, Jones EG (eds) Cerebral Cortex. New York: Plenum, vol 3, pp. 259-330. - 7. Campbell FW & Kulikowski JJ (1966) Orientation selectivity of the human visual system. J Physiol 187, 437-445. - 8. Blakemore C & Nachmias J (1971) The orientation specificity of two visual aftereffects. J Physiol 213, 157-174. - 9. Movshon JA & Blakemore C (1973) Orientation specificity and spatial selectivity in human vision. *Perception* 2, 53-60. - 10. Thomas J & Gille J (1979) Bandwidths of orientation channels in human vision. J Opt Soc Am 69, 652-660. - 11. De Valois RL, Yund EW & Hepler N (1982) The orientation and direction selectivity of cells in macaque visual cortex. Vision Res 22, 531-544. - 12. Wilson HR (1991). Psychophysical models of spatial vision and hyperacuity. In D Regan (Ed) Spatial Vision. London: Macmillan. - 13. Wilson HR & Gelb DJ (1984) Modified line element theory. J Opt Soc Am A1, 124-131. - 14. Wilson HR & Regan D (1985) Spatial frequency adaptation and grating discrimination: predictions of a line element model. *J Opt Soc Am* A1, 1091-1096. - 15. Wyszecki G & Stiles WS (1967) Colour Science, Concepts and Methods: Quantitative Data and Formulas. New York: Wiley. - 16. Banton T & Levi DM (1990) Vernier localization in the motion system. *Invest Ophthalmol Vis Sci* (Suppl. 31). (ARVO Abstr.), 443. - 17. Lee DN (1976) A theory of visual control of braking based on information about time-to-collision. *Perception* 5, 437-459. - 18. Lee DN & Lishman JR (1977) Visual control of locomotion. Scand J Psychol 18, 224-230. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 - 19. Lee DN, Lishman JR & Thomson JA (1982) Visual regulation of gait in long jumping. J Exp Psychol: Hum Percept Perform 8, 448-459. - 20. Warren WH, Young DS, & Lee DN (1986) Visual control of step length during running over irregular terrain. J Exp Psychol: Hum Percept Perform 12, 259-266. - 21. Bootsma RJ & van Wieringen PCW (1990) Timing an attacking forehand drive in table tennis. J Exp Psychol: Hum Percept Perform 16, 21-29. - 22. Savelsbergh GJP, Whiting HTA & Bootsma RJ (1991) Grasping 'Tau'. J Exp Psychol: Hum Percept Perform, in press. - 23. Blakemore C & Campbell FW (1971) On the existence of neurons within the human visual system selectively sensitive to the orientation and size of retinal images. *J Physiol (Lond)* 213, 157-174. - 24. DeValois RL & DeValois KK (1980) Spatial vision. Ann Rev Psychol 31, 309-341. - 25. Wilson HR (1991) Psychophysical models of spatial vision and hyperacuity. In D Regan (Ed) Spatial Vision. London: Macmillan. - 26. Wilson HR, McFarlane DK & Phillips GC (1983) Spatial frequency tuning of orientation specific units estimated by oblique masking. *Vision Res* 23, 873-882. - 27. Tanaka K, Fukada Y & Saito H (1989) Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. *J Neurophysiol* 62, 642-656. - 28. Tanaka K & Saito H (1989) Analysis of motion in the visual field by direction, expansion/contraction and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. *J Neurophysiol* 62, 626-641. - 29. Zeki SM (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. *J Physiol (Lond.)* 236, 549-573. - 30. Ball K & Sekuler R (1980) Models of stimulus uncertainty in motion perception. *Psychol Rev* 87, 435-469. - 31. Hoyle F (1957) The Black Cloud. London: Heinemann. Repr. Penguin Books, 1971, 26-27. - 32. De Valois KK & Switkes E (1983) Simultaneous masking inteactions between chromatic and luminance gratings. J Opt Soc Am 73, 11-18. - 33. Bradley A, Switkes E & De Valois KK (1988) Orientation and spatial frequency selectivity of adaptation to isoluminant color and luminance patterns. *Vision Res* 28, 841-856. - 34. Bodis-Wollner I, Marx MS, Mitra S, Bobak P, Mylin L & Yahr M (1987) Visual dysfunction in Parkinson's disease. *Brain* 110, 1675-1698. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 # CUMULATIVE LIST OF PUBLICATIONS # 4.1 Books 4 - 1. Regan D (1972) Evoked potentials in psychology, sensory physiology and clinical medicine. London: Chapman & Hall; New York: Wiley, 328 pp, rpt 1975. - 2. Regan D (1989) Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine. New York: Elsevier, 672 pp. - 3. Regan D, Shapley RM & Spekreijse H (Eds) (1985) Systems approach in vision. New York: Pergamon, 219 pp. - 4. Regan D (Ed) (1991) Binocular Vision (Vol 9, "Vision and visual dysfunction" series). London: Macmillan. - 5. Regan D (Ed) (1991) Spatial Vision (Vol 10, "Vision and visual dysfunction" series). London: Macmillan. # 4.2 Papers #### 1966 - 1. Regan D (1966) Some characteristics of average steady-state and transient responses evoked by modulated light. *Electroenceph clin Neurophysiol* 20, 238-48. - 2. Regan D (1966) An apparatus for the correlation of evoked potentials and repetitive stimuli. *Med Biol Engng* 4, 168-77. - 3. Regan D (1966) An effect of stimulus colour on average steady-state potentials evoked in man. *Nature* 210, 1056-7. #### 1968 - 4. Regan D (1968) A high frequency mechanism which underlies visual evoked potentials. *Electroenceph clin Neurophysiol* 25, 231-7. - 5. Regan D (1968) Chromatic adaptation and steady-state evoked potentials. Vision Res 8, 149-58. - 6. Regan D (1968) Evoked potentials and sensation. Percept Psychophys 4, 347-50. #### 1969 - 7. Regan D (1969) Evoked potentials and colour vision. 7th ISCERG Symp, Istanbul. Univ of Istanbul, 37-50. - 8. Regan D (1969) Chapters 3 & 4 in DM MacKay (Ed), Evoked potentials and Psychophysics. *Neurosci Res Bull* 7, N^o 3. - 9. Regan D & Heron JR (1969) Clinical investigation of lesions of the visual pathway: a new objective technique. J Neurol Neurosurg Psychiat 32, 479-83. - 10. Tweel LH van der, Regan D & Spekreijse H (1969) Some aspects of potentials evoked by changes in spatial brightness contrast. 7th ISCERG Symp, Istanbul. Univ of Istanbul, 1-11. - 11. Regan D (1970) Evoked potentials and psychophysical correlates of changes in stimulus colour and intensity. Vision Res 10, 163-78. - 12. Regan D (1970) Objective method of measuring the relative spectral luminosity curve in man. J Opt Soc Am 60, 856-9. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 - 13. Regan D & Heron JE (1970) Simultaneous recording of visual evoked potentials from the left and right hemispheres in migraine. In AL Cochrane (Ed), *Background to migraine*. London: Heinemann, 66-77. - 14. Regan D & Cartwright RF (1970) A method of measuring the potentials evoked by simultaneous stimulation of different retinal regions. *Electroenceph clin Neurophysiol* 28, 314-9. - 15. Regan D & Spekreijse H (1970) Electrophysiological correlate of binocular depth perception in man. *Nature* 255, 92-4. #### 1971 - 16. Regan D & Sperling HG (1971) A method of evoking contour-specific scalp potentials by chromatic checkerboard patterns. Vision Res 11, 173-6. - 17. Regan D & Tyler CW (1971) Wavelength-modulated light generator. Vision Res 11, 43-56. - 18. Regan D & Tyler CW (1971) Some dynamic features of colour vision. Vision Res 11, 1307-24. - 19. Regan D & Tyler CW (1971) Temporal summation and its limit for wavelength changes: an analog of Bloch's law for color vision. J Opt Soc Am 61, 1414-21. - 20. Regan D & Richards W (1971) Independence of evoked potentials and apparent size. Vision Res 11, 679-84. #### 1972 - 21. Regan D (1972) Evoked potentials to changes in the chromatic contrast and luminance contrast of checkerboard stimulus patterns. In GB Arden (Ed), *The visual system*. New York: Plenum, 171-87. - 22. Regan D (1972) Evoked potentials to changes in chromatic contrast. Proc GAIN symp on EPs to spatial contrast. Trace 6, 20-8. - 23. Regan D (1972) Cortical evoked potentials. Adv Behav Biol 5, 177-92. - 24. Spekreijse H, van der Tweel LH & Regan D (1972) Interocular sustained suppression: correlations with evoked potential amplitude and distribution. Vision Res 12, 521-6. - 25. Milner BA, Regan D & Heron JR (1972) Theoretical models of the generation of steady-state evoked potentials, their relation to neuroanatomy and their relevance to certain clinical problems. Adv Med Biol 24, 157-69. - 26. Regan D (1973) Parallel and sequential processing of visual information in man: investigation by evoked potential recording. In *Photophysiology*, Vol 8. New York: Academic, 185-208. - Regan D (1973) An evoked potential correlate of colour: evoked potential findings and single-cell speculations. Vision Res 13, 1933-41. - Regan D (1973) Evoked potentials specific to spatial patterns of luminance and colour. Vision Res 13, 2381-2402. - 29. Regan D (1973) Rapid objective refraction using evoked brain potentials. Invest Ophthalmol 12, 669-79. - 30. Regan D & Richards W (1973) Brightness contrast and evoked potentials. J Opt Soc Am 63, 606-11. - 31. Regan D & Beverley KI (1973) Disparity detectors in human depth perception: evidence for directional selectivity. Science 18, 877-9. - 32. Regan D & Beverley KI (1973) Some dynamic features of depth perception. Vision Res 13, 2369-79. - 33. Regan D & Beverley KI (1973) The dissociation of sideways movements from movements in depth: psychophysics. Vision Res 13, 2403-15. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3I 1P3 - 34. Beverley KI & Regan D (1973) Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space. *J Physiol* 235, 17-29. - 34a. Beverley KI & Regan D (1973) Selective adaptation in stereoscopic depth perception. J Physiol 232, 40-41P. - 35. Regan D & Beverley KI (1973) Relation between the magnitude
of flicker sensation and evoked potential amplitude in man. *Perception* 2, 61-5. - 36. Regan D & Beverley KI (1973) Electrophysiological evidence for the existence of neurones sensitive to the direction of depth movement. *Nature* 246, 504-6. - 37. Richards W & Regan D (1973) A stereo field map with implications for disparity processing. *Invest Ophthalmol* 12, 904-9. #### 1974 - 38. Cartwright RF & Regan D (1974) Semi-automatic, multi-channel Fourier analyser for evoked potential analysis. *Electroenceph clin Neurophysiol* 36, 547-50. - 39. Regan D (1974) Electrophysiological evidence for colour channels in human pattern vision. *Nature* 250, 437-49. - 40. Regan D & Spekreijse H (1974) Evoked potential indications of colour blindness. Vision Res 14, 89-95. - 41. Heron JR, Regan D & Milner BA (1974) Delay in visual perception in unilateral optic atrophy after retrobulbar neurities. *Brain* 97, 69-78. - 42. Beverley KI & Regan D (1974) Temporal integration of disparity information in stereoscopic perception. Exp Brain Res 19, 228-32. - 43. Beverley KI & Regan D (1974) Visual sensitivity to disparity pulses: evidence for directional selectivity. Vision Res 14, 357-61. - 44. Regan D (1974) Visually evoked potential methods with clinical application. Proc 11th ISCERG Symp, Bad Neuheim (1973). *Docum Ophthal Proc Series* 4, 285-301. - 45. Milner BA, Regan D & Heron JR (1974) Differential diagnosis of multiple sclerosis by visual evoked potential recording, *Brain* 97, 755-72. ## 1975 - 46. Regan D (1975) Colour coding of pattern responses in man investigated by evoked potential feedback and direct plot techniques. Vision Res 15, 175-83. - 47. Heron JR, Milner BA & Regan D (1975) Measurement of acuity variations within the central visual field caused by neurological lesions. J Neurol Neurosurg Psychiat 38, 356-62. - 48. Regan D, Schellart NAM, Spekreijse H & van den Berg TJTP (1975) Photometry in goldfish by electrophysiological recording: comparison of criterion response method with heterochromatic flicker photometry. *Vision Res* 15, 799-807. - 49. Beverley KI & Regan D (1975) The relation between discrimination and sensitivity in the perception of motion in depth. J Physiol 249, 387-98. - 50. Regan D (1975) Recent advances in electrical recording from the human brain. Nature 253, 401-07. #### 1976 51. Regan D, Milner BA & Heron JR (1976) Delayed visual perception and delayed visual evoked potentials in the spinal form of multiple sclerosis and in retrobulbar neuritis. *Brain* 99, 43-66. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 - 52. Regan D, Varney P, Purdy J & Kraty N (1976) Visual field analyser: assessment of delay and temporal resolution of vision. *Med Biol Engng* 14, 8-14. - 53. Regan D (1976) Latencies of evoked potentials to flicker and to pattern speedily estimated by simultaneous stimulation method. *Electroenceph clin Neurophysiol* 40, 654-60. - 54. Galvin RJ, Regan D & Heron JR (1976) A possible means of monitoring the progress of demyelination in multiple sclerosis: effect of body temperature on visual perception of double light flashes. *J Neurol Neurosurg Psychiat* 39, 861-65. - Galvin RJ, Regan D & Heron JR (1976) Impaired temporal resolution of vision after acute retrobulbar neuritis. Brain 99, 255-68. - 56. Regan D (1977) Fourier analysis of evoked potentials: some methods based on Fourier analysis. In JE Desmedt (Ed), Visual evoked potentials in man: new developments. Oxford: Oxford Univ Press, 110-17. - 57. Regan D (1977) Rapid methods for refracting the eye and for assessing visual acuity in amblyopia, using steady-state visual evoked potentials. In JE Desmedt (Ed), Visual evoked potentials in man: new developments. Oxford: Oxford Univ Press, 418-26. - 58. Regan D (1977) Evoked potential indications of the processing of pattern, colour, and depth information. In JE Desmedt (Ed), Visual evoked potentials in man: new developments. Oxford: Oxford Univ Press, 234-49. - 59. Regan D, Milner BA & Heron JR (1977) Slowing of visual signals in multiple sclerosis, measured psychophysically and by steady-state evoked potentials. In JE Desmedt (Ed), Visual evoked potentials in man: new developments. Oxford: Oxford Univ Press, 461-69. - 60. Regan D (1977) Speedy assessment of visual acuity in amblyopia by the evoked potential method. Ophthalmologica 175, 159-64. - 61. Regan D & Spekreijse H (1977) Auditory-visual interactions and the correspondence between perceived auditory space and perceived visual space. *Perception* 6, 133-38. - 62. Galvin RJ, Heron JR & Regan D (1977) Subclinical optic neuropathy in multiple sclerosis. *Arch Neurol* 34, 666-70. - 63. Regan D (1977) Steady state evoked potentials. Proc Symp Electrophysiological Techniques in Man. J Opt Soc Am 67, 1475-89. - 64. Regan D, Silver R & Murray TJ (1977) Visual acuity and contrast sensitivity in multiple sclerosis hidden visual loss. *Brain* 100, 563-79. - 65. Regan D, Murray TJ & Silver R (1977) Effect of body temperature on visual evoked potential delay and visual perception in multiple sclerosis. *J Neurol Neurosurg Psychiat* 40, 1083-91. - Arden GB, Bodis-Wollner I, Halliday AM, Jeffreys A, Kulikowski JJ, Spekreijse H & Regan D (1977) Methodology of patterned visual stimulation. In JE Desmedt (Ed), Visual evoked potentials in man: new developments. Oxford: Oxford Univ Press, 3-15. - 67. Regan D (1977) Visual evoked potentials and visual perception in multiple sclerosis. *Proc San Diego Biomed Symp*, Vol 16. New York: Academic, 87-95. - 68. Regan D (1977) New methods for neurological assessment: overview. *Proc San Diego Biomed Symp*, Vol 16. New York: Academic, 55-62. - 69. Regan D (1977) Evoked potentials in basic and clinical research. In A Rémond (Ed), EEG informatics: a didactic review of methods and applications of EEG data processing. Amsterdam: Elsevier, 319-46. - 70. Regan D (1977) Colour and contrast. In H Spekreijse & LH van der Tweel (Eds), Spatial contrast: report of a workshop. Publ for Netherlands Royal Academy of Sciences. Amsterdam: North-Holland, 75-9. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 #### 1978 - 71. Regan D & Milner BA (1978) Objective perimetry by evoked potential recording: limitations. *Electroenceph clin Neurophysiol* 44, 393-7. - 72. Regan D & Beverley KI (1978) Looming detectors in the human visual pathway. Vision Res 18, 415-21. - 73. Cynader M & Regan D (1978) Neurones in cat parastriate cortex sensitive to the direction of motion in three-dimensional space. *J Physiol* 274, 549-69. - 74. Regan D & Beverley KI (1978) Illusory motion in depth: aftereffect of adaptation to changing size. Vision Res 18, 209-12. - 75. Hillyard SA, Picton TW & Regan D (1978) Sensation, perception and attention: analysis using ERPs. In E Callaway, P Tueting & SH Koslow (Eds), Event-related brain potentials in man. New York: Academic, 223-321. - 76. Regan D (1978) Assessment of visual acuity by evoked potential recording: ambiguity caused by temporal dependence of spatial frequency selectivity. *Vision Res* 18, 439-45. - 77. Regan D (1978) Investigations of normal and defective colour vision by evoked potential recording. *Mod Probl Ophthal* 19, 19-28. - 78. Regan D, Beverley KI & Cynader M (1978) Stereoscopic depth channels for position and for motion. In SJ Cool & EL Smith (Eds), Frontiers in visual science. New York: Springer, 351-72. #### 1979 - 79. Regan D, Beverley KI & Cynader M (1979) Stereoscopic subsystems for position in depth and for motion in depth. *Proc R Soc Lond B* 204, 485-501. - 80. Regan D & Tansley BW (1979) Selective adaptation to frequency-modulated tones: evidence for an information-processing channel selectively sensitive to frequency changes. J Acoust Soc Am 65, 1249-57. - 81. Regan D & Beverley KI (1979) Visually guided locomotion: psychophysical evidence for a neural mechanism sensitive to flow patterns. *Science* 205, 311-13. - 82. Beverley KI & Regan D (1979) Separable aftereffects of changing-size and motion-in-depth: different neural mechanisms? Vision Res 19, 727-32. - 83. Beverley KI & Regan D (1979) Visual perception of changing-size: the effect of object size. Vision Res 19, 1093-1104. - 84. Regan D & Cynader M (1979) Neurons in area 18 of cat visual cortex selectively sensitive to changing size: nonlinear interactions between responses to two edges. Vision Res 19, 699-711. - 85. Regan D & Beverley KI (1979) Binocular and monocular stimuli for motion in depth: changing-disparity and changing-size feed the same motion-in-depth stage. Vision Res 19, 1331-42. - Regan D, Beverley KI & Cynader M (1979) The visual perception of motion in depth. Scient Am 241, 136-51. - 87. Tansley BW & Regan D (1979) Separate auditory channels for unidirectional frequency modulation and unidirectional amplitude modulation. Sensory Proc 3, 132-40. - 88. Regan D (1979) Electrical responses evoked from the human brain. Scient Am 241, 134-46. # 1980 89. Regan D, Whitlock J, Murray TJ & Beverley KI (1980) Orientation-specific losses of contrast sensitivity in multiple sclerosis. *Invest Ophthalmol Vis Sci* 19, 324-28. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 - 90. Regan D & Beverley KI (1980) Visual responses to changing size and to sideways motion for different directions of motion in depth: linearization of visual responses. J Opt Soc Am 11, 1289-96. - 91. Beverley KI & Regan D (1980) Temporal selectivity of changing-size channels. J Opt Soc Am 11, 1375-77. - 92. Beverley KI & Regan D (1980) Visual sensitivity to the shape and size of a moving object: implications for models of object perception. *Perception* 9, 151-60. - 93. Beverley KI & Regan D (1980) Device for measuring the precision of eye-hand coordination while tracking changing size. Aviat Space Environ Med 51, 688-93. - Regan D (1980) Speedy evoked potential methods for assessing vision in normal and amblyopic eyes: pros and cons. Vision Res 20, 265-69. - 95. Regan D (1980) New visual tests in
multiple sclerosis. In HS Thompson (Ed), Topics in neuro-ophthalmology. Baltimore: Williams & Wilkins, 219-42. - 96. Regan D (1980) Detection and quantification of neuroophthalmological abnormalities using psychophysical measures of visual delay and temporal resolution. In S Sokol (Ed), *Electrophysiology and psychophysics:* their use in ophthalmic diagnosis. Intl Ophthal Clinics. Boston: Little, Brown, 185-204. - 97. Regan D (1980) Control system and physiological monitoring applications of steady-state evoked potentials. In FE Gomer (Ed), *Biocybernetic applications for military systems*. DARPA Conf, Chicago (1978). St Louis: McDonnell-Douglas. Report MDC E2191, 175-202. - 98. Regan D & Beverley KI (1981) Motion sensitivity measured by a psychophysical linearizing technique. J Opt Soc Am 71, 958-65. - 99. Raymond J, Regan D & Murray TJ (1981) Abnormal adaptation of visual contrast sensitivity in multiple sclerosis patients. Can J Neurol Sci 8, 221-34. - 100. Noseworthy J, Miller J, Murray TJ & Regan D (1981) Auditory brainstem responses in postconcussion syndrome. Arch Neurol 38, 275-78. - 101. Regan D, Raymond J, Ginsburg A & Murray TJ (1981) Contrast sensitivity, visual acuity and the discrimination of Snellen letters in multiple sclerosis. *Brain* 104, 333-50. - 102. Petersik JT, Beverley KI & Regan D (1981) Contrast sensitivity of the changing-size channel. Vision Res 21, 829-32. - 103. Regan D (1981) Psychophysical tests of vision and hearing in patients with multiple sclerosis. In SG Waxman & JM Ritchie (Eds), Demyelinating disease: basic and clinical electrophysiology. Proc Vail Conf MS Soc of USA. New York: Raven, 217-37. - 104. Kruk R, Regan D, Beverley KI & Longridge T (1981) Correlations between visual test results and flying performance on the Advanced Simulator for Pilot Training (ASPT). Aviat Space Environ Med 52, 455-60. - 105. Regan D (1981) Visual psychophysical tests in multiple sclerosis as an aid to diagnosis, localization of pathology, and assessment of experimental therapy. In *Clinical applications of visual psychophysics* (Proc NAS/NRC Symp). New York: Cambridge Univ Press. - 106. Regan D (1981) Electrophysiology and psychophysics of motion in depth. Proc 18th ISCERG Symp, Amsterdam (1981). Docum Ophthal Proc Series 27, 271-81. - 107. Regan D (1981) Evoked potential studies of visual perception. Can J Psychol 35, 77-112. - 108. Regan D, Kruk R, Beverley KI & Longridge T (1981) The relevance of channel theory for the design of simulator imagery. *Proc Image II conf.*, Arizona, 307-44. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 #### 1982 - 109. Regan D (1982) Comparison of transient and steady-state methods. Proc NY Acad Sci 388, 46-71. - 110. Beverley KI & Regan D (1982) Adaptation to incomplete flow patterns: no evidence for "filling in" the perception of flow patterns. *Perception* 11, 275-78. - 111. Cynader M & Regan D (1982) Neurons in cat visual cortex tuned to the direction of motion in depth: effect of positional disparity. Vision Res 22, 967-82. - 112. Regan D & Cynader M (1982) Neurons in cat visual cortex tuned to the direction of motion in depth: effect of stimulus speed. *Invest Ophthalmol Vis Sci* 22, 535-50. - 113. Tansley BW, Regan D & Suffield JB (1982) Measurement of the sensitivities of information-processing channels for frequency change and for amplitude change by a titration method. Can J Psychol 36, 723-30. - 114. Regan D & Beverley KI (1982) How do we avoid confounding the direction we are looking with the direction we are moving? Science 215, 194-96. - 115. Regan D (1982) Visual information channeling in normal and disordered vision, Psychol Rev 89, 407-44. - 116. Regan D, Regal DM & Tibbles JAR (1982) Evoked potentials during recovery from blindness recorded serially from an infant and his normally sighted twin. *Electroenceph clin Neurophysiol* 54, 465-68. - 117. Regan D, Bartol S, Murray TJ & Beverley KI (1982) Spatial frequency discrimination in normal vision and in patients with multiple sclerosis. *Brain* 105, 735-54. - 118. Regan D (1982) Visual sensory aspects of simulation. In W Richards & K Dismukes (Eds), Vision research for flight simulator. Washington: National Academy Press, 65-71. - 119. Kruk R, Regan D, Beverley KI & Longridge T (1983) Flying performance on the Advanced Simulator for Pilot Training and laboratory tests of vision. *Human Factors* 25, 457-66. - 120. Regan D (1983) Visual psychophysical tests in demyelinating disease. Bull Soc Belge Ophtal 208-I, 303-21, - 121. Regan D & Beverley KI (1983) Visual fields described by contrast sensitivity, by acuity and by relative sensitivity to different orientations. *Invest Ophthalmol Vis Sci* 24, 754-59. - 122. Regan D & Beverley KI (1983) Visual fields for frontal plane motion and for changing size. Vision Res 23, 673-76. - 123. Regan D (1983) Spatial frequency mechanisms in human vision investigated by evoked potential recording. Vision Res 23, 1401-08. - Quine DB, Regan D & Murray TJ (1983) Delayed auditory tone perception in multiple sclerosis. Can J Neurol Sci 10, 183-86. - 125. Beverley KI & Regan D (1983) Texture changes versus size changes as stimuli for motion in depth. Vision Res 23, 1387-1400. - 126. Kruk R & Regan D (1983) Visual test results compared with flying performance in telemetry-tracked aircraft. Aviat Space Environ Med 54, 906-11. - 127. Burbeck CA & Regan D (1983) Independence of orientation and size in spatial discriminations. J Opt Soc Am 73, 1691-94. - 128. Regan D & Beverley KI (1983) Spatial frequency discrimination and detection: comparison of postadaptation thresholds. *J Opt Soc Am* 73, 1684-90. - 129. Regan D & Neima D (1983) Low-contrast letter charts as a test of visual function. Ophthalmology 90, 1192-1200. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 #### 1984 - 130. Regan D & Beverley KI (1984) Figure-ground segregation by motion contrast and by luminance contrast. J Opt Soc Am 1, 433-42. - 131. Quine DB, Regan D, Beverley KI & Murray TJ (1984) Patients with multiple sclerosis experience hearing loss specifically for shifts of tone frequency. *Arch Neurol* 41, 506-08. - 132. Quine DB, Regan D & Murray TJ (1984) Degraded discrimination between speech-like sounds by patients with multiple sclerosis and Friedreich's ataxia. *Brain* 107, 1113-22. - 133. Neima D & Regan D (1984) Pattern visual evoked potentials and spatial vision in retrobulbar neuritis and multiple sclerosis. Arch Neurol 41, 198-201. - 134. Neima D, LeBlanc R & Regan D (1984) Visual field defects in ocular hypertension and glaucoma. Arch Ophthalmol 102, 1042-45. - 135. Regan D & Neima D (1984) Visual fatigue and VEPs in multiple sclerosis, glaucoma, ocular hypertension and Parkinson's disease. *J Neurol Neurosurg Psychiat* 47, 673-78. - 136. Wilson HR & Regan D (1984) Spatial frequency adaptation and grating discrimination predictions of a lineelement model. J Opt Soc Am A 1, 1091-96. - 137. Regan D & Neima D (1984) Balance between pattern and flicker sensitivities in the visual fields of ophthalmological patients. Br J Ophthalmol 68, 310-15. - 138. Regan D & Neima D (1984) Low contrast letter charts in early diabetic retinopathy, ocular hypertension, glaucoma and Parkinson's disease. Br J Ophthalmol 68, 885-89. - 139. Regan D (1984) Visual psychophysical tests in the diagnosis of multiple sclerosis. In CM Poser (Ed), The diagnosis of multiple sclerosis. New York: Thieme-Stratton, 64-75. - 140. Regan D (1984) Chapters 11 & 12 in E Donchin (Ed), Cognitive psychophysiology. Hillsdale, NJ: Erlbaum, 303-38. - 141. Regan D & Beverley KI (1984) Psychophysics of visual flow patterns and motion in depth. In L Spillman & BR Wooten (Eds), Sensory experience, adaptation and perception. Hillsdale, NJ: Erlbaum, 215-40. - 142. Regan D (1984) Visual factors in flying performance. Proc TARP, NAMRL Monograph 33, 3-10. - 143. Regan D, Beverley KI & Macpherson H (1984) Pattern visual evoked potentials in amblyopic children. In RH Nodar & C Barber (Eds) Evoked potentials II. Boston: Butterworth, 293-301. - 144. Regan D (1984). Spatial vision: VEP evidence for mechanisms tuned to spatial frequency. In RH Nodar & C Barber (Eds) Evoked potentials II. Boston: Butterworth, 287-89. - 145. Regan D & Beverley KI (1985) Postadaptation orientation discrimination. J Opt Soc Am A 2, 147-55. - 146. Regan D (1985) Visual flow and direction of locomotion. Science 227, 1063-65. - 147. Regan D & Beverley KI (1985) Visual responses to vorticity and the neural analysis of optic flow. J Opt Soc Am. A 2, 280-83. - 148. Regan D (1985) Evoked potentials in diagnosis. In M Swash & C Kennard (Eds), Scientific basis of clinical neurology. Edinburgh: Churchill Livingstone. - 149. Regan D (1985) Masking of spatial frequency discrimination. J Opt Soc Am A 2, 1153-59. - Regan D (1985) Storage of spatial-frequency information and spatial-frequency discrimination. J Opt Soc Am A 2, 619-21. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3I 1P3 - Regan D (1985) Evoked potentials and their application to neuro-ophthalmology. Neuro-ophthalmology 5, 73-108. - 152. Regan D (1985) New visual sensory tests in neurology and ophthalmology. In A Starr (Ed), *Proc 7th evoked potential workshop*, Univ of California, Irvine (1984). Milan: Amplifon, 101-19. - 153. Spekreijse H, Dangelie G, Maier J & Regan D (1985) Flicker and movement constituents of the pattern reversal response. Vision Res 25, 1297-1304. #### 1986 - 154. Regan D (1986) Visual processing of four kinds of relative motion. Vision Res 26, 127-45. - 155. Regan D & Price P (1986) Periodicity in orientation discrimination and the unconfounding of visual information. Vision Res 26, 1299-1302. - 156. Regan D & Spekreijse H (1986) Evoked potentials in vision research: 1961-1985. Vision Res 26, 1461-80. - 157. Regan D (1986) Form from motion parallax and form from luminance contrast: vernier discrimination. Spatial Vision 1, 305-18. - 158. Regan D, Collewijn H &
Erkelens CJ (1986) Necessary conditions for the perception of motion in depth. Invest Ophthalmol Vis Sci 27, 584-97. - 159. Regan D, Erkelens CJ & Collewijn H (1986) Visual field defects for vergence eye movements and for stereomotion perception. *Invest Ophthalmol Vis Sci* 27, 806-19. - 160. Regan D & Maxner C (1986) Orientation-dependent loss of contrast sensitivity for pattern and flicker in multiple sclerosis. Clin Vision Sci 1, 1-23. - 161. Erkelens CJ & Regan D (1986) Human ocular vergence movements induced by changing size and disparity. J Physiol 379, 145-69. - 162. Collewijn H, Erkelens CJ & Regan D (1986) Absolute and relative disparity: a re-evaluation of their significance in perception and oculomotor control. In E Keller & DS Zee (Eds), Adaptive processes in visual and oculomotor systems. Pergamon. - 163. Regan D (1986) The eye in ballgames: hitting and catching. Sport en zien. Haarlem: De Vrieseborch, pp 7-32. - 164. Regan D., Kaufman, L. and Lincoln, J (1986) Motion in depth and visual acceleration. In KR Boff, L. Kaufman & JP Thomas (Eds) *Handbook of perception and human performance*. New York: Wiley, pp.19-1 to 19-46. - 165. Regan D (1986) Binocular vision. In Encyclopaedia of physics in medicine and biology. Pergamon, pp 33-4. - 166. Regan D & Maxner C (1987) Orientation-selective visual loss in patients with Parkinson's disease. Brain 110, 239-71. - 167. Regan D & Regan MP (1987) Nonlinearity in human visual responses to two-dimensional patterns and a limitation of Fourier methods. Vision Res 27, 2181-83. - 168. Regan D (1987) Human visual evoked potentials. In T Picton (Ed), Human event-related potentials. Amsterdam: Elsevier, pp 159-243. - 169. Regan D (1987) Evoked potentials and color-defined categories. In S Harnad (Ed), Categorical perception. New York: Cambridge Univ Press, 443-51. - 170. Regan D & Regan MP (1987) Spatial frequency tuning, orientation tuning and spatial discrimination investigated by nonlinear analysis of pattern evoked potentials. In C Barber & T Blum (Eds) Evoked potentials III. Stoneham, MA: Butterworths 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3I 1P3 - 171. Morgan MJ & Regan D (1987) Opponent model for line interval discrimination: interval and vernier performance compared. Vision Res 27, 107-18. - 172. Apkarian P, Tijssen R, Spekreijse H & Regan D (1987) Origin of notches in CSF: optical or neural? *Invest Ophthalmol Vis Sci* 28, 607-12. - 173. Regan D & Regan MP (1987) "Dissecting" the visual and auditory pathways by means of the two-input technique. Proc Conf on Electric and Magnetic Activity of the Central Nervous System, Trondheim, Norway. AGARD Conf Proc. 432, 6, 1-9. - 174. Regan D & Neima D (1987) Relation between VEP and visual function in lesions of the optic nerve and visual pathway. Proc Conf on Electric and Magnetic Activity of the Central Nervous System, Trondheim, Norway. AGARD Conf. Proc. 432, 38, 1-8. #### 1988 - 175. Regan D (1988) Low contrast letter charts and sinewave grating tests in ophthalmological and neurological disorders. Clin Vision Sci 2, 235-50. - 176. Regan D (1988) Low-contrast visual acuity test for paediatric use. Can J Ophthalmol 23, 224-27. - 177. Regan D & Regan MP (1988) The transducer characteristic of hair cells in the human ear: a possible objective measure. *Brain Res* 438, 363-65. - 178. Regan D & Regan MP (1988) Objective evidence for phase-independent spatial frequency analysis in the human visual pathway. Vision Res 28, 187-91. - 179. Regan MP & Regan D (1988) A frequency domain technique for characterizing nonlinearities in biological systems. J Theoret Biol 133, 293-317. - Regan D (1988) Visual sensory loss in patients with Parkinson's disease. In I Bodis-Wollner & M Piccolino (Eds), Dopaminergic mechanisms in vision. Neurology & Neurobiology 43. New York: AR Liss, pp 221-26. - 181. Hong X & Regan D (1989) Visual field defects for unidirectional and oscillatory motion in depth. *Vision Res* 29, 809-19. - 182. Regan D (1989) Orientation discrimination for objects defined by relative motion and objects defined by luminance contrast. Vision Res 29, 1389-1400. - 183. Regan MP & Regan D (1989) Objective investigation of visual function using a nondestructive zoom-FFT technique for evoked potential analysis. Can J Neurol Sci 16, 168-79. - 184. Regan D (1989) Magnetic fields generated by the human brain. Can Res 22, 11-15. - 185. Regan D (1989) To what extent can visual defects caused by multiple sclerosis be understood in terms of parallel processing? In B Cohen (Ed), Vision and the brain: The organization of the central visual system. New York: Raven, 317-29. - 186. Regan D (1989) Acute spatial discriminations and the unconfounding of visual information. In JJ Kulikowski (Ed), Seeing contour and colour, 333-339. - 187. Regan MP & Regan D (1989) Evoked potential investigation of nonlinear processing stages in human spatial vision. In JJ Kulikowski (Ed), Seeing contour and colour, 513-18. - 188. Regan D & Regan MP (1989) Ultra-high resolution analysis of auditory and visual brain responses using zoom-FFT. In SJ Williamson, M Hoke, G Stroink & M Kotani (Eds), Advances in biomagnetism. New York: Plenum, 205-07. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 189. Regan MP & Regan D (1989) A frequency domain technique for using evoked magnetic fields to test multistage models of sensory processing. In SJ Williamson, M Hoke, G Stroink & M Kotani (Eds), Advances in biomagnetism. New York: Plenum, 201-04. #### 1990 - 190. Regan D & Hong X (1990) Visual acuity for optotypes made visible by relative motion. Optom & Vision Science 67, 49-55. - 191. Kothe A. & Regan D (1990) The component of gaze selection/control in the development of visual acuity in children. Optom & Vision Science 67, 770-778. - 192. Kothe AC & Regan D (1990) Crowding depends on contrast. Optom & Vis Sci 4, 283-86. - 193. Regan D (1990) High and low contrast acuity. Optom & Vis Sci 67, 650-53. - 194. Regan D, Frisby J, Poggio G, Schor C & Tyler CW (1990) The perception of stereodepth and stereomotion. In L Spillman and JS Werner (Eds), Neurophysiological foundations of visual perception. Academic, 317-47. - 195. Regan D (1991) Specific tests and specific blindness: keys, locks and parallel processing. Prentice Medal Lecture. Optom & Vis Sci 68, 489-512. - 196. Regan D & Hamstra S (1991) Shape discrimination for motion-defined and contrast-defined form: Squareness is special. *Perception* 20, 315-36. - 197. Regan D & Hamstra S (1991) Shape discrimination and perfect symmetry. Vision Res, in press. - 198. Regan D, Kothe AC & Sharpe JA (1991) Recognition of motion-defined shapes in patients with multiple sclerosis and optic neuritis. *Brain* 114, 1129-55. - 199. Regan D (1991) Do letter charts measure contrast sensitivity? Clin Vis Science 6, 401-08. - 200. Regan D (1991) Visual judgements and misjudgements in cricket, and the art of flight. Perception, in press. - 201. Regan D (1991) A brief review of some of the stimuli and analysis methods used in spatiotemporal vision research. In D Regan (Ed), Spatial vision. London: Macmillan, 1-42. - 202. Regan D (1991) Spatiotemporal abnormalities of vision in patients with multiple sclerosis. In D Regan (Ed), Spatial vision. London: Macmillan, 239-49. - 203. Regan D. (1991) Detection and spatial discriminations for objects defined by colour contrast, binocular disparity and motion parallax. In D Regan (Ed), Spatial vision. London: Macmillan, 135-78. - 204. Bodis-Wollner I & Regan D (1991) Spatiotemporal contrast vision in Parkinson's disease and MPT treated monkeys: the role of dopamine. In D Regan (Ed), Spatial vision. London: Macmillan, 250-60. - 205. Regan D (1991) Depth from motion and motion in depth. In D Regan (Ed), Binocular vision. London: Macmillan, 37-69. - Collewijn H, Steinman RM, Erkelens CJ & Regan D (1991) Binocular fusion, stereopsis and stereoacuity with a moving head. In D Regan (Ed.) Binocular vision. London, Macmillan, 121-36. - 207. Regan MP & Regan D (1991) A frequency domain method for testing nonlinear multi-neuron models against data. In R Pinter (Ed) Nonlinearities in visual processing. - 208. Regan D (1991) Nonlinearities in psychophysical models of the processing of spatial form and motion. In R Pinter (Ed) Nonlinearities in visual processing. - 209. Giaschi D, Regan D, Kothe AC, Hong XH & Sharpe JA (1991) Central visual dysfunction in patients with multiple sclerosis. *Ann. Neurol*, in press. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 - 210. Regan D & Hong XH (1991) Motion-defined letter reading test. Opt Soc of Amer Tech Digest, in press. - 211. Regan D (1991) A sensitive method for quantifying functional loss caused by veiling glare in patients and in elderly nonpatients. Opt Soc of Amer Tech Digest, in press. - 212. Bahill AT, Karnavas WJ & Regan (1991) The perceptual illusion of the rising fastball and breaking curveball. J Exp Psychol Hum Perform, in press. - 213. Regan D, Hong XH & Hamstra (1991) Visual sensitivity to camouflaged motion-defined objects and the limits of safety in nap-of-the-Earth helicopter navigation. In Proc. Symp. on Aeromedical Aspects of Vision, Toronto, 161-66. - 214. Regan D (1991) Procedures for establishing low-contrast vision and glare susceptibility standards for pilots and drivers, and the selection of personnel for visual search and surveillance. In Proc. Symp. on Aeromedical Aspects of Vision, Toronto, 34-56. - 215. Karnavas WJ, Bahill AT and Regan D (1990) Sensitivity analysis of a model for the rising fastball and breaking curveball. *Proc IEEE Syst Man & Cybernet*, Los Angeles, in press. #### Articles Submitted - 216. Regan D, Hamstra S (1991) Dissociation of discrimination thresholds for time to contact and for rate of change of size. Vision Res. - 217. Regan D & Hamstra S (1989) Shape discrimination for objects defined by relative motion: effects of presentation duration. Vision Res. - 218 Regan D & Hamstra S
(1991) The effects of presentation duration and dot lifetime on orientation discrimination for motion-defined bars and contrast-defined bars. Vision Res. - 219. Giaschi D, Lang A, Kierens C, Hong XH & Regan D (1991) Motion and contrast processing in the "on" and "off" periods in Parkinson's disease. *Ann Neurol*. - 220. Regan D, Giaschi D, Sharpe JA & Hong XH (1991) Visual processing of motion-defined form: selective failure in patients with parieto-temporal lesions. *J Neurosci*. - 221. Giaschi D & Regan D (1991) Spatial discrimination for motion-defined form and for contrast-defined form: dissociated development in children. *Vision Res*. - 222. Giaschi D, Regan D, Kraft S & Hong XH (1991) Defective processing of motion in the fellow eye of unilateral amblyopes. *Invest Ophthalmol Vis Sci.* - 223. Regan D, Giaschi D, Kraft S & Kothe AC (1991) A functional subclassification of amblyopia and suggested implications for patient management. *J Pediatric Ophthalmol & Strabismus*. - 224. Regan D, Giaschi D & Fresco B (1991) Measurement of glare sensitivity in cataract patients using low-contrast letter charts. Arch Ophthalmol. - 225. Giaschi D, Regan D, Kraft S & Kothe AC (1991) Crowding and contrast in amblyopia. J Pediat Ophthalmol & Strabismus. ## Articles in Preparation - 226. Regan D. Measurement of glare sensitivity using low contrast acuity charts: relevance to aviation and highway safety. Aviation, Space & Environmental Medicine. - 227. Regan D & Lee BB. A comparison of the human 40 Hz response with the properties of macaque ganglion cells. Visual Neuroscience. - 228. Regan D & Hong X. Visual resolution, contour interaction and contrast. J Opt Soc Am. - 229. Regan MP & Regan D. Nonlinear interactions between visual responses to gratings of different spatial frequencies. Vision Res. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 - 230. Regan D, Giaschi D, Trope G, Kothe AC & Hong XH. Visual sensitivity to motion-defined letters in patients with primary open angle glaucoma and ocular hypertension. Archiv Ophthalmol. - 231. Regan D. Spatial vision for objects defined by relative motion, color contrast and binocular disparity. *Psych Review*. - 232. Regan D & Kaushal S. Monocular discrimination of the direction of motion in depth. J Exp Psychol Hum Percept Perform. - 233. He P & Regan D. Magnetic brain responses evoked by pattern, motion and 40 Hz flicker. *Electroenceph clin Neurophysiol*. - 234. Regan D & He P. Comparison of magnetic brain responses to motion-defined form and luminance-defined form. Exp Brain Res. - 235. Regan MP, He P, Hong XH & Regan D. Neuromagnetic identification of an audio-visual convergence region in the human brain. Exp Brain Res. - 236. Regan MP. Linear half-wave rectification of modulated sinusoids. Quart J Appl Math. - 237. Regan MP. Predicted responses of a model hair cell to the sum of two AM tones and comparison with gross electrical and magnetic data. J Acoust Soc Am. - 238. Regan D. Spatial vision for objects defined by relative motion and by luminance contrast. *Proc Conf on Spatial Vision*, York, 1991. Hillsdale, NJ: Erlbaum. ## Abstracts and Book Reviews About 150-200 (not listed) #### **Patents** - Regan D & Parr N. "Improvement in paramedical instrumentation" (Joule-Thomson effect cataract surgery probe). U.K. patent application 4964 (1972). Wilkinson Sword Research. - Regan D. "Improvements in paramedical instrumentation" (visual acuity measurement). U.K. patent application 4866 (1972). Accepted in U.K., U.S.A., Germany, E. Europe, Japan. Wilkinson Sword Research. - Regan D. "Improvements in paramedical instrumentation" (multiple sclerosis diagnosis). U.K. patent application 4865(1972). U.S.A. patent № 3,837,734; West German Patent № 2,304,808. Wilkinson Sword Research. - Regan D. "Improvements in signal analysis". U.K. patent application 59921 (1972). - Regan D. "Improved apparatus and methods for optometry" (1972). U.K. patent application 15246/72, 49241/72, 9934/73. U.S.A., E. Europe, W. Germany, U.K. National Research Development Corporation. - Regan D. "Paramedical apparatus and method" (multiple sclerosis diagnosis). U.K. patent application 25,532 (1964). Wilkinson Sword Research. - Regan D & Beverley KI. "Methods and apparatus for measuring hand-eye coordination while tracking a changing-size image". U.S. patent Nº 4,325,697 (1982). U.S. Air Force. - Regan D. "Paramedical apparatus and method" (eye test chart). U.K. provisional patent 8521775 (1985). # FACULTY OF ARTS 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 #### 5 PARTICIPATING PROFESSIONALS, DEGREES AND HONORS #### 5.1 Participating professionals - D. Regan, Ph.D., D.Sc., F.R.S.C. Professor of Ophthalmology, University of Toronto (Cross Appts. Depts. of Medicine, Biomedical Engineering, and Psychology). Professor of Psychology, York University (Cross Appts. Depts of Biology and Physics). Co-Director, Human Performance in Space Laboratory, Institute for Space & Terrestrial Science. - D. Giaschi, Ph.D. - P. He, Ph.D. - X. H. Hong, Ph.D. - M. P. Regan, Ph.D. - S. Hamstra, M.A. - S. Kaushal, B.A. #### 5.2 Degrees and honors Awarded to the PI: At the November 1991 Convocation, York University awarded the degree honoris causa and title of Distinguished Research Professor. The Prentice Medal of the American Academy of Optometry was awarded at the December 1990 Annual Meeting. Elected a Fellow of the Optical Society of America. Awarded a Killam Senior Fellowship. # **INTERACTIONS** #### 6.1 Scientific visitors 6 Professor H. Spekreijse, Director of the Inter-University Eye Institute (I.O.I.) of the Netherlands and Belgium, visited for two weeks in April 1991 to carry out joint research with the PI and Dr. He on visually-evoked magnetic brain responses. By invitation, Dr. He paid a return visit to the I.O.I. (funded by York University). Professor J. Victor (Cornell University) visited for two weeks in July 1991 to carry out 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 joint research on magnetic and electrical brain responses to non-Fourier motion with the PI, Dr. He and Dr. M. P. Regan (visit funded by York University and Cornell University). Professor J. Daugman (Harvard University) visited for one week to carry out joint research on the visual processing of motion (visit funded by York University). # 6.2 Meetings organized Co-organized (with Dr. I. Howard) an international meeting on Spatial Vision at York University, August 1991. This was funded by York University and the Natural Sciences and Engineering Research Council of Canada. The speakers were Drs. Ballard, Bergen, Cavanagh, Daugman, De Valois, Heeger, Hinton, Julesz, Klein, Nakayama, Penland, Poggio, Regan, Richards, Szeliski, Tsotsos, Wilson, Yuille and Zucker. In addition to the invited speakers, there were poster presentations (submitted). About 200 attended. # 6.3 Papers presented at meetings, conferences, seminars, etc. ## 6.3.1 Formal Lectures The Charles F. Prentice Award Lecture. "Specific tests and specific blindnesses: keys, locks and parallel processing". The Medical Research Council of Canada Lecture. "Selective visual loss in patients and super-sight in athletes: two ends of a continuum". Distinguished Speaker Series, York University. "Visual processing of motion and form in normally-sighted individuals and in neurological patients". Association for Research in Vision and Ophthalmology (ARVO) (1991). Regan D, Hamstra S. "Shape discrimination and the judgement of perfect symmetry," *Invest Ophthalmol Vis Sci* Suppl. 32, 1271. Association for Research in Vision and Ophthalmology (ARVO) (1991). Hamstra S, Regan D. "Dot lifetime and presentation duration have little effect on orientation discrimination for equally detectable motion-defined and contrast-defined bars," *Invest Ophthal Vis Sci* Suppl. 32, 1270. 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 - Association for Research in Vision and Ophthalmology (ARVO) (1991). Fresco B, Giaschi D, Regan D. "Sensitive measurement of glare susceptibility in cataract patients and nonpatients," *Invest Ophthalmol Vis Sci* Suppl. 32, 1084. - Association for Research in Vision and Ophthalmology (ARVO) (1991). Giaschi D, Regan D, Kothe A, Hong XH, Sharpe J. "Multiple sclerosis can degrade detection and/or discrimination of motion-defined form while sparing motion sensitivity," *Invest Ophthalmol Vis Sci* Supp. 32, 1282. - Air Standardization Coordinating Committee (USA/Canada/Australia/New Zealand/UK) WP61 (1991). Regan D. "Procedures for establishing low-contrast vision and glare susceptibility standards for pilots and drivers, and the selection of personnel for visual search and surveillance". - Air Standardization Coordinating Committee (USA/Canada/Australia/New Zealand/UK) WP61 (1991). Regan D, Hong XH, Hamstra S. "Visual sensitivity to camouflaged motion-defined objects and the limits of safety in nap-of-the-Earth helicopter navigation". - Optical Society of America meeting on Noninvasive Assessment of the Visual System, Santa Fe. Regan D. "A sensitive method for quantifying functional loss caused by veiling glare in patients and elderly nonpatients". - Optical Society of America meeting on Noninvasive Assessment of the Visual System, Santa Fe. Regan D, Hong XH. "Motion-defined letter reading test". Invited Demonstration. - International Conference on Spatial Vision in Humans and Robots, York University. Regan D. "Spatial vision for motion-defined form". - International Conference on Spatial Vision in Humans and Robots, York University. Hong XH, Regan D. "Motion blindness for unilateral and oscillatory motion in depth". - IEEE, Los Angeles. Bahill AT, Karnavas WJ, Regan D. "The perceptual illusion of the rising fastball and breaking curveball". 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 Annual Meeting, American Academy of Optometry. Kothe AC, Regan D, Sharpe J. "A motion-defined letter test to detect visual dysfunction in patients
with optic neuritis and MS". # 6.3.2 Seminars - Massachusetts Institute of Technology (Cognitive Sciences and A.I.). "Spatial vision for motion-defined form". - Johns Hopkins University (Dept. of Neuroscience). "Processing of shape and motion: human vision and visual physiology". - Rochester University (Center for Visual Science). "Spatial vision for motion-defined form". - University of Toronto (Dept. of Biomedical Engineering). "Human vision investigated by functional methods and by magnetic brain recording". - University of Aston (Dept. of Optometry). "Disorders of motion, form and contrast processing in patients with amblyopia, glaucoma and multiple sclerosis". - University of Toronto (Dept. of Psychology). Selective visual loss in patients and super-sight in athletes: opposite ends of a continuum?" - Dalhousie University (Dept. of Ophthalmology). "Subclassification of amblyopia; assessment of intraocular lenses; vision in multiple sclerosis". - Dalhousie University (Neurology, Ophthalmology and Pediatrics Residents). "Implications of current research for future clinical practice". # 7 STATEMENTS: INFORMATION FOR ATTENTION OF AFCSR PROGRAM MANAGER Results and techniques that are of immediate selection and operational, or medical relevance are as follows. # 7.1 Selection and operational Our GLARE SUSCEPTIBILITY TEST (Section 3.13 above) is immediately relevant to selection of aircrew for fixed wing and rotary wing vehicles who must fly in high glare (e.g. midday, desert Department of Psychology # FACULTY OF ARTS 4700 KEELE STREET • NORTH YORK • ONTARIO • CANADA • M3J 1P3 conditions, low sun) and/or low-contrast conditions (e.g. high Arctic). Our MOTION-DEFINED LETTER TEST (Sections 3.3 & 3.12 and Refs 190, 195, 213) assesses quantitatively intersubject differences in the ability to process relative motion and, in particular, to recognize camouflaged objects defined by relative motion. This ability is presumably important for terrain avoidance and flight safety in nap-of-the-Earth helicopter flight in either naked-eye conditions or when using night vision goggles. This is because many terrain features (e.g. grassy protuberance with grassy surround) and objects (e.g. a tree against a background of trees) are partly camouflaged when hovering, and clearly visible only when moving. We have developed software for this test that runs on a standard IBM PC or true clone with "Wonder Plus" graphics card. On receipt of a blank floppy disk we will supply the test gratis to vision researchers. The software cites AFOSR sponsorship and instructions for use are supplied. Six copies of the disk are enclosed with this report. Our technique for measuring discrimination thresholds for (θ/θ) in the absence of other cues (Section 3.4 above and Ref 216) may help to predict intersubject differences in discriminating TIME TO COLLISION, and these intersubject differences may be important for flying safety (terrain avoidance) in low-level flight in fixed-wing vehicles and nap-of-the-Earth flight in rotary-wing vehicles. # 7.2 Medical Our GLARE SUSCEPTIBILITY TEST assesses the effect of early cataract on visual disability sensitivity. The results are quantitative and expressed in a way that is intuitively simple to relate to performance in specific real-world tasks. Our MOTION-DEFINED LETTER TEST sensitively picks up visual damage hidden to the Snellen test, contrast sensitivity tests and motion sensitivity tests in the following diseases: ocular hypertension and glaucoma; amblyopia; multiple sclerosis; brain lesions involving a specific region of white matter (Section 3.12 above and Refs 198, 209, 219, 220, 221, 224, 230).